Advertisement

Software Agents in Retinal Vessels Classification

  • Pablo ChamosoEmail author
  • Sara Rodríguez
  • Fernando De La Prieta
  • Juan F. De Paz
  • Javier Bajo Pérez
  • Juan Manuel Corchado Rodríguez
  • Luis García-Ortiz
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)

Abstract

This article presents a methodology for the classification of retinal vessels based on agreement technologies and artificial vision. Some studies have demonstrated a direct relationship between the information gathered from retinal images and certain pathologies such as hypertension or diabetes. There are different works that present methodologies based on image processing algorithms to extract that information, but there is no globally accepted methodology to obtain the information automatically, which is the objective of this work. The proposed methodology has been evaluated by one expert user and compared with other existing free software with similar features.

Keywords

Agents Agreement technologies Retinal vessels Visual analysis e-Health 

Notes

Acknowledgments

This work was carried out under the frame of the project with Ref. “TIN2015-65515-C4-3-R”. The research of Pablo Chamoso has been financed by the Regional Ministry of Education in Castilla y León and the European Social Fund (EDU/310/2015).

References

  1. 1.
    Li, Q., Zhu, P., Huang, F., Lin, F., Yuan, Y., Gao, Z., Chen, F.: The relationship of retinal vessel diameters and fractal dimensions with blood pressure and cardiovascular risk factors. J. Am. Coll. Cardiol. 66(16 S), 1–10 (2015)CrossRefGoogle Scholar
  2. 2.
    McGeechan, K., Liew, G., Macaskill, P., Irwig, L., Klein, R., Klein, B.E., Wang, J.J., Mitchell, P., Vingerling, J.R., Dejong, P.T., Witteman, J.C., Breteler, M.M., Shaw, J., Zimmet, P., Wong, T.Y.: Meta-analysis: retinal vessel caliber and risk for coronary heart disease. Ann. Intern. Med. 151(6), 404–413 (2009)CrossRefGoogle Scholar
  3. 3.
    Chamoso, P., Pérez-Ramos, H., García-García, Á.: Supervised methodology to obtain retinal vessels caliber. ADCAIJ: Adv. Distrib. Comput. Artif. Intell. J. 3(4), 48–57 (2014)CrossRefGoogle Scholar
  4. 4.
    Tanabe, Y., Kawasaki, R., Wang, J.J., Wong, T.Y., Mitchell, P., Daimon, M., Yamashita, H.: Retinal arteriolar narrowing predicts 5-year risk of hypertension in Japanese people: the Funagata study. Microcirculation 17(2), 94–102 (2010)CrossRefGoogle Scholar
  5. 5.
    Yatsuya, H., Folsom, A.R., Wong, T.Y., Klein, R., Klein, B.E., Sharrett, A.R., ARIC Study Investigators: Retinal microvascular abnormalities and risk of lacunar stroke atherosclerosis risk in communities study. Stroke 41(7), 1349–1355 (2010)Google Scholar
  6. 6.
    Wong, T.Y., Duncan, B.B., Golden, S.H., Klein, R., Couper, D.J., Klein, B.E., Hubbard, L.D., Sharrett, A.R., Schmidt, M.I.: Associations between the metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities study. Investig. Ophthalmol. Vis. Sci. 45(9), 2949–2954 (2004)CrossRefGoogle Scholar
  7. 7.
    Daxer, A.: The fractal geometry of proliferative diabetic retinopathy: implications for the diagnosis and the process of retinal vasculogenesis. Curr. Eye Res. 12(12), 1103–1109 (1993)CrossRefGoogle Scholar
  8. 8.
    Zana, F., Klein, J.C.: Robust segmentation of vessels from retinal angiography. In: 1997 13th International Conference on Digital Signal Processing Proceedings, DSP 1997, vol. 2, pp. 1087–1090. IEEE (1997)Google Scholar
  9. 9.
    Fraz, M.M., Remagnino, P., Hoppe, A., Uyyanonvara, B., Rudnicka, A.R., Owen, C.G., Barman, S.A.: Blood vessel segmentation methodologies in retinal images-a survey. Comput. Methods Programs Biomed. 108(1), 407–433 (2012)CrossRefGoogle Scholar
  10. 10.
    Soille, P.: Principles and Applications. Springer Science & Business Media, Berlin (2013)zbMATHGoogle Scholar
  11. 11.
    Chapman, N., Witt, N., Gao, X., Bharath, A.A., Stanton, A.V., Thom, S.A., Hughes, A.D.: Computer algorithms for the automated measurement of retinal arteriolar diameters. Br. J. Ophthalmol. 85(1), 74–79 (2001)CrossRefGoogle Scholar
  12. 12.
    Martinez-Perez, M.E., Hughes, A.D., Thom, S.A., Bharath, A.A., Parker, K.H.: Segmentation of blood vessels from red-free and fluorescein retinal images. Med. Image Anal. 11(1), 47–61 (2007)CrossRefGoogle Scholar
  13. 13.
    Ege, B.M., Hejlesen, O.K., Larsen, O.V., Møller, K., Jennings, B., Kerr, D., Cavan, D.A.: Screening for diabetic retinopathy using computer based image analysis and statistical classification. Comput. Methods Programs Biomed. 62(3), 165–175 (2000)CrossRefGoogle Scholar
  14. 14.
    Winder, R.J., Morrow, P.J., McRitchie, I.N., Bailie, J.R., Hart, P.M.: Algorithms for digital image processing in diabetic retinopathy. Comput. Med. Imaging Graph. 33(8), 608–622 (2009)CrossRefGoogle Scholar
  15. 15.
    García-Ortiz, L., Recio-Rodríguez, J.I., Parra-Sanchez, J., Elena, L.J.G., Patino-Alonso, M.C., Agudo-Conde, C., Rodríguez-Sánchez, E., Gómez-Marcos, M.A.: A new tool to assess retinal vessel caliber. Reliability and validity of measures and their relationship with cardiovascular risk. J. Hypertens. 30(4), 770–777 (2012)CrossRefGoogle Scholar
  16. 16.
    Furmankiewicz, M., Sołtysik-Piorunkiewicz, A., Ziuziański, P.: Artificial intelligence systems for knowledge management in e-health: the study of intelligent software agents. In: Latest Trends on Systems: The Proceedings of 18th International Conference on Systems, Santorini Island, Greece, pp. 551–556 (2014)Google Scholar
  17. 17.
    Ossowski, S., Sierra, C., Botti, V.: Agreement technologies: a computing perspective. In: Ossowski, S. (ed.) Agreement Technologies, pp. 3–16. Springer Science+Business Media, Dordrecht (2013). doi: 10.1007/978-94-007-5583-3_1 CrossRefGoogle Scholar
  18. 18.
    Rodríguez, S., De Paz, Y., Bajo, J., Corchado, J.M.: Social-based planning model for multiagent systems. Expert Syst. Appl. 38(10), 13005–13023 (2011)CrossRefGoogle Scholar
  19. 19.
    Sánchez, A., Villarrubia, G., Zato, C., Rodríguez, S., Chamoso, P.: A gateway protocol based on FIPA-ACL for the new agent platform PANGEA. In: Pérez, J., et al. (eds.) Trends in Practical Applications of Agents and Multiagent Systems. AISC, pp. 41–51. Springer International Publishing, Cham (2013). doi: 10.1007/978-3-319-00563-8_6 CrossRefGoogle Scholar
  20. 20.
    Castelfranchi, C., Miceli, M., Cesta, A.: Dependence relations among autonomous agents. In: Decentralized AI, vol. 3, pp. 215–227 (1992)Google Scholar
  21. 21.
    Corchado, J.M., Laza, R.: Constructing deliberative agents with case-based reasoning technology. Int. J. Intell. Syst. 18, 1227–1241 (2003). doi: 10.1002/int.10138 CrossRefGoogle Scholar
  22. 22.
    Corchado, J.M., Glez-Bedia, M., De Paz, Y., Bajo, J., De Paz, J.F.: Replanning mechanism for deliberative agents in dynamic changing environments. Comput. Intell. 24(2), 77–107 (2008)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Garcia-Ortiz, L., Perez-Ramos, H., Chamoso-Santos, P., Recio-Rodriguez, J.I., Garcia-Garcia, A., Maderuelo-Fernandez, J.A., Gomez-Sanchez, L., Martínez-Perez, P., Rodriguez-Martin, C., De Cabo-Laso, A., Sanchez-Salgado, B., Rodríguez-González, S., De Paz-Santana, J.F., Corchado-Rodríguez, J.M., Gomez-Marcos, M.A.: Automatic image analyzer to assess retinal vessel caliber (ALTAIR) tool validation for the analysis of retinal vessels. J. Hypertens. 34, e160 (2016)CrossRefGoogle Scholar
  24. 24.
    Rahwan, I., Simari, G.: Argumentation in Artificial Intelligence. Springer, Heidelberg (2009)Google Scholar
  25. 25.
    Walton, D., Reed, C., Macagno, F.: Argumentation Schemes. Cambridge University Press, Cambridge (2008)CrossRefzbMATHGoogle Scholar
  26. 26.
    Heras, S., Jordán, J., Botti, V., Julián, V.: Argue to agree: a case-based argumentation approach. Int. J. Approx. Reason. 54(1), 82–108 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Pablo Chamoso
    • 1
    Email author
  • Sara Rodríguez
    • 1
  • Fernando De La Prieta
    • 1
  • Juan F. De Paz
    • 1
  • Javier Bajo Pérez
    • 2
  • Juan Manuel Corchado Rodríguez
    • 1
  • Luis García-Ortiz
    • 3
  1. 1.IBSAL/BISITE Research Group, Edificio I+D+IUniversity of SalamancaSalamancaSpain
  2. 2.Department of Artificial IntelligenceTechnical University of MadridMadridSpain
  3. 3.Primary Care Research Unit La AlamedillaCastilla and León Health Service (SACYL)SalamancaSpain

Personalised recommendations