Boolean Matrix Approach for Abstract Argumentation

  • Fuan PuEmail author
  • Guiming Luo
  • Yucheng Chen
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)


In this paper, we propose a Boolean matrix approach to encode Dung’s acceptability semantics. Each semantics is encoded into one or more Boolean constraint models, which can be solved by Boolean constraint solvers. In addition, based on our Boolean matrix representations, we also propose a bit-vector-based approach to compute the grounded semantics, and the experimental results show that this approach can achieve a good performance.


Boolean matrix Abstract argumentation Acceptability semantics Encodings Boolean constraints Bit vector 


  1. 1.
    Dung, P.M.: On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games. J. Artif. Intell. 77(2), 321–357 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baroni, P., Caminada, M., Giacomin, M.: An introduction to argumentation semantics. Knowl. Eng. Rev. 26, 365–410 (2011)CrossRefGoogle Scholar
  3. 3.
    Givant, S., Halmos, P.: Introduction to Boolean Algebras. Springer Science & Business Media, Berlin (2008)zbMATHGoogle Scholar
  4. 4.
    Pu, F., Luo, J., Luo, G.: Some supplementaries to the counting semantics for abstract argumentation. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 242–249. IEEE (2015)Google Scholar
  5. 5.
    Hadjisoteriou, E.: Computing argumentation with matrices. In: Schulz, C., Liew, D. (eds.) 2015 Imperial College Computing Student Workshop (ICCSW 2015). OpenAccess Series in Informatics (OASIcs), vol. 49, pp. 29–36. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl (2015)Google Scholar
  6. 6.
    Bistarelli, S., Rossi, F., Santini, F.: Benchmarking hard problems in random abstract AFs: the stable semantics. In: COMMA (2014)Google Scholar
  7. 7.
    Lagniez, J.M., Lonca, E., Mailly, J.G.: CoQuiAAS: a constraint-based quick abstract argumentation solver. In: 2015 IEEE 27th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 928–935. IEEE (2015)Google Scholar
  8. 8.
    Cerutti, F., Giacomin, M., Vallati, M.: ArgSemSAT: solving argumentation problems using SAT. COMMA 14, 455–456 (2014)Google Scholar
  9. 9.
    Xu, Y.: A matrix approach for computing extensions of argumentation frameworks. CoRR abs/1209.1899 (2012)Google Scholar
  10. 10.
    Hadjisoteriou, E., Georgiou, M.: ASSA: computing stable extensions with matrices. In: System Descriptions of the First International Competition on Computational Models of Argumentation (ICCMA 2015) (2015)Google Scholar
  11. 11.
    Triska, M.: The boolean constraint solver of SWI-Prolog: system description. In: Kiselyov, O., King, A. (eds.) FLOPS 2016. LNCS, vol. 9613, pp. 45–61. Springer, Cham (2016). doi: 10.1007/978-3-319-29604-3_4 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of SoftwareTsinghua UniversityBeijingChina

Personalised recommendations