Coalition Formation with Logic-Based Agents

  • Gianluigi GrecoEmail author
  • Antonella Guzzo
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)


Coalition formation is studied in a setting where agents take part to a group decision-making scenario and where their preferences are expressed via weighted propositional logic, in particular by considering formulas consisting of conjunctions of literals only. Interactions among agents are constrained by an underlying social environment and each agent is associated with a specific social factor determining to which extent s/he prefers staying in a coalition with other agents. In particular, the utilities of the agents depend not only on their absolute preferences but also on the number of “neighbors” occurring with them in the coalition that emerged. Within this setting, the computational complexity of a number of relevant reasoning problems is studied, by charting a clear picture of the intrinsic difficulty of finding “agreements” in such social environments. Some restrictions leading to identify classes of tractable instances are discussed, too.


  1. 1.
    Anagnostopoulos, A., Kumar, R., Mahdian, M.: Influence and correlation in social networks. In: Proceedings of KDD 2008, pp. 7–15 (2008)Google Scholar
  2. 2.
    Auletta, V., Caragiannis, I., Ferraioli, D, Galdi, C., Persiano, G.: Generalized discrete preference games. In: Proceedings of IJCAI 2016, pp. 53–59 (2016)Google Scholar
  3. 3.
    Bansal, N., Sviridenko, M.: The santa claus problem. In: Proceedings of STOC 2006, pp. 31–40 (2006)Google Scholar
  4. 4.
    Bhawalkar, K., Gollapudi, S., Munagala, K.: Coevolutionary opinion formation games. In: Proceedings of STOC 2013, pp. 41–50 (2013)Google Scholar
  5. 5.
    Bezáková, I., Dani, V.: Allocating indivisible goods. SIGecom Exch. 5(3), 11–18 (2005)CrossRefGoogle Scholar
  6. 6.
    Bindel, D., Kleinberg, J., Oren, S.: How bad is forming your own opinion? Games Econ. Behav. 92, 248–265 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Borodin, A., Filmus, Y., Oren, J.: Threshold models for competitive influence in social networks. In: Saberi, A. (ed.) WINE 2010. LNCS, vol. 6484, pp. 539–550. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bouveret, S., Lang, J.: Efficiency and envy-freeness in fair division of indivisible goods: logical representation and complexity. J. Artif. Intell. Res. 32, 525–564 (2008)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Conitzerm, V., Brandt, F., Endriss, U.: Computational social choices. In: Multiagent Systems. MIT Press, Cambridge (2012)Google Scholar
  10. 10.
    Carnes, T., Nagarajan, C., Wild, S.M., Van Zuylen, A.: Maximizing influence in a competitive social network: a follower’s perspective. In: Proceedings of EC 2007, pp. 351–360 (2007)Google Scholar
  11. 11.
    Cha, B., Iwama, K., Kambayashi, Y., Miyazaki, S.: Local search algorithms for partial MAXSAT. In: Proceedings of AAAI 1997, pp. 263–268 (1997)Google Scholar
  12. 12.
    Cha, M., Mislove, A., Gummadi, K.P.: A measurement-driven analysis of information propagation in the flickr social network. In: Proceedings of WWW 2009, pp. 721–730 (2009)Google Scholar
  13. 13.
    Chalkiadakis, G., Greco, G., Markakis, E.: Characteristic function games with restricted agent interactions: core-stability and coalition structures. Artif. Intell. 232, 76–113 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Cialdini, R.B., Goldstein, N.J.: Social inuence: compliance and conformity. Annu. Rev. Psychol. 55, 591–621 (2004)CrossRefGoogle Scholar
  15. 15.
    Coste-Marquis, S., Lang, J., Liberatore, P., Marquis, P.: Expressive power and succinctness of propositional languages for preference representation. In: Proceedings of KR 2004, pp. 203–212 (2004)Google Scholar
  16. 16.
    David, E., Jon, K.: Networks, Crowds, and Markets: Reasoning About a Highly Connected World. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  17. 17.
    Dechter, R.: Constraint Processing. Morgan Kaufmann Publishers Inc., San Francisco (2003)zbMATHGoogle Scholar
  18. 18.
    DeGroot, M.H.: Reaching a consensus. J. Am. Stat. Assoc. 69, 118–121 (1974)CrossRefzbMATHGoogle Scholar
  19. 19.
    Elkind, E., Rahwan, T., Jennings, N.R.: Computational coalition formation. In: Multiagent Systems. MIT press (2013)Google Scholar
  20. 20.
    Escoffier, B., Gourvès, L., Monnot, J.: Fair solutions for some multiagent optimization problems. Auton. Agent. Multi-Agent Syst. 26(2), 184–201 (2013)CrossRefGoogle Scholar
  21. 21.
    Friedkin, N.E., Johnsen, E.C.: Social influence and opinions. J. Math. Soc. 15, 193–206 (1990)CrossRefzbMATHGoogle Scholar
  22. 22.
    Gonzales, C., Perny, P., Queiroz, S.: Preference aggregation with graphical utility models. In: Proceedings of AAAI 2008, pp. 1037–1042 (2008)Google Scholar
  23. 23.
    Granovetter, M.: Threshold models of collective behavior. Am. J. Sociol. 83(6), 1420–1443 (1978)CrossRefGoogle Scholar
  24. 24.
    He, X., Song, G., Chen, W., Jiang, Q.: Influence blocking maximization in social networks under the competitive linear threshold model. In: Proceedings of SDM 2012, pp. 463–474 (2012)Google Scholar
  25. 25.
    Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through a social network. In: Proceedings of KDD 2003, pp. 137–146 (2003)Google Scholar
  26. 26.
    Gottlob, G., Greco, G., Scarcello, F.: Tractable optimization problems through hypergraph-based structural restrictions. In: Proceedings of ICALP 2009, pp. 16–30 (2009)Google Scholar
  27. 27.
    Gottlob, G., Greco, G., Scarcello, F.: Treewidth and Hypertree Width. In: Bordeaux, L., Hamadi, Y., Kohli, P. (eds.) Tractability: Practical Approaches to Hard Problems (2012)Google Scholar
  28. 28.
    Greco, G., Lang, J.: Group decision making via weighted propositional logic: complexity and islands of tractability. In: Proceedings of IJCAI 2015, pp. 3008–3014 (2015)Google Scholar
  29. 29.
    Lafage, C., Lang, J.: Logical representation of preferences for group decision making. In: Proceedings of KR 2000, pp. 457–468 (2000)Google Scholar
  30. 30.
    Lang, J., Xia, L.: Voting in combinatorial domains. In: Handbook of Computational Social Choice, pp. 1193–1195 (2014)Google Scholar
  31. 31.
    Robertson, N., Seymour, P.D.: Graph minors. II. Algorithmic aspects of tree-width. J. Algorithms 7(3), 309–322 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition structure generation with worst case guarantees. Artif. Intell. 111(1–2), 209–238 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Tang, J., Wu, S., Sun, J.: Confluence: conformity influence in large social networks. In: Proceedings of KDD 2013, pp. 347–355 (2013)Google Scholar
  34. 34.
    Uckelman, J., Chevaleyre, Y., Endriss, U., Lang, J.: Representing utility functions via weighted goals. Math. Logic Q. 55(4), 341–361 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Uckelman, J., Endriss, U.: Compactly representing utility functions using weighted goals and the max aggregator. Artif. Intell. 174(15), 1222–1246 (2010)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of CalabriaRendeItaly

Personalised recommendations