Advertisement

Propositional Belief Merging with T-conorms

  • Henrique VianaEmail author
  • João Alcântara
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)

Abstract

We analyze in this paper the impact of introducing fuzzy T-conorm operators in the area of belief merging. There are mainly two subclasses of merging operators: the utilitarian and the egalitarian ones. We prove that a T-conorm merging operator can be included in the subtype of egalitarian operators. We also study how the different T-conorm operators behave with respect to their logical properties and how this affects their rationality.

References

  1. 1.
    Alcantud, J.: Liberal approaches to ranking infinite utility streams: When can we avoid interferences? Mpra paper, University Library of Munich, Germany (2011). http://EconPapers.repec.org/RePEc:pra:mprapa:32198
  2. 2.
    Alcantud, J.C.R.: Non-interference and continuity: impossibility results for the evaluation of infinite utility streams. Technical report, p. 13 (2011)Google Scholar
  3. 3.
    Butnariu, D., Klement, E.P.: Triangular norm-based measures and games with fuzzy coalitions, vol. 10. Springer Science & Business Media, New York (1993)zbMATHGoogle Scholar
  4. 4.
    Cappelen, A.W., Tungodden, B.: A liberal egalitarian paradox. Econ. Philos. 22, 393–408 (2006)CrossRefGoogle Scholar
  5. 5.
    Dalal, M.: Investigations into a theory of knowledge base revision. In: Proceedings of the Seventh American National Conference on Artificial Intelligence (AAAI88). pp. 475–479 (1988)Google Scholar
  6. 6.
    Dalton, H.: The measurement of the inequality of incomes. Econ. J. 30, 348–361 (1920)CrossRefGoogle Scholar
  7. 7.
    Detyniecki, M., Yager, R.R., Bouchon-Meunier, B.: Reducing t-norms and augmenting t-conorms. Int. J. Gen. Syst. 31(3), 265–276 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Everaere, P., Konieczny, S., Marquis, P.: On egalitarian belief merging. In: AAAI (2014)Google Scholar
  9. 9.
    Hammond, P.J.: Equity, arrow’s conditions, and rawls’ difference principle. Econ.: J. Econom. Soc. 793–804 (1976)Google Scholar
  10. 10.
    Klement, E.P., Mesiar, R.: Logical, Algebraic, Analytic and Probabilistic Aspects of Triangular Norms. Elsevier Science B.V., Amsterdam (2005)zbMATHGoogle Scholar
  11. 11.
    Klement, E.P., Mesiar, R., Pap, E.: On the order of triangular norms: comments on “a triangular norm hierarchy” by e. cretu. Fuzzy Sets Syst. 131(3), 409–413 (2002)CrossRefzbMATHGoogle Scholar
  12. 12.
    Klement, E.P., Pap, E., Mesiar, R.: Triangular Norms. Trends in logic, Kluwer Academic Publ. cop., Dordrecht (2000). http://opac.inria.fr/record=b1104736 CrossRefzbMATHGoogle Scholar
  13. 13.
    Konieczny, S., Lang, J., Marquis, P.: DA\(^2\) merging operators. Artif. Intell. 157(1–2), 49–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Konieczny, S., Pino-Pérez, R.: Merging with integrity constraints. In: Fifth European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 1999). pp. 233–244 (1999)Google Scholar
  15. 15.
    Konieczny, S., Pino-Pérez, R.: Merging information under constraints: a logical framework. J. Log. Comput. 12(5), 773–808 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. Coop. Inf. Syst. 7, 55–76 (1996)CrossRefGoogle Scholar
  17. 17.
    Lombardi, M., Miyagishima, K., Veneziani, R.: Liberal Egalitarianism and the Harm Principle. Mpra Paper. University Library of Munich, Germany (2013)Google Scholar
  18. 18.
    Mariotti, M., Veneziani, R.: ‘Non-interference’ implies equality. Soc. Choice Welf. 32(1) (2008). http://dx.doi.org/10.1007/s00355-008-0316-x
  19. 19.
    Moulin, H.: Axioms of Cooperative Decision Making, Econometric Society monographs, vol. 15. Cambridge University Press, Cambridge (1988)CrossRefzbMATHGoogle Scholar
  20. 20.
    Revesz, P.Z.: On the semantics of theory change: arbitration between old and new information. In: Proceedings of the 12th ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems. pp. 71–82. ACM (1993)Google Scholar
  21. 21.
    Savage, L.: The Foundations of Statistics. Wiley, New York (1954)zbMATHGoogle Scholar
  22. 22.
    Schweizer, B., Sklar, A.: Associative functions and statistical triangle inequalities. Publ. Math. Debrecen. 8, 169–186 (1961)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Sen, A.K.: Choice, Welfare and Measurement. Harvard University Press, Cambridge (1997)zbMATHGoogle Scholar
  24. 24.
    Tungodden, B.: Egalitarianism: is leximin the only option? Working papers, Norwegian School of Economics and Business Administration (1999). http://EconPapers.repec.org/RePEc:fth:norgee:4/99
  25. 25.
    Viana, H., Alcântara, J.: Propositional Belief Merging with T-conorms (proofs) https://db.tt/OZWSR0EO
  26. 26.
    Weber, S.: A general concept of fuzzy connectives, negations and implications based on t-norms and t-conorms. Fuzzy Sets Syst. 11(1–3), 103–113 (1983)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets Syst. 4(3), 235–242 (1980)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Computer ScienceFederal University of CearáFortalezaBrazil

Personalised recommendations