Monitoring the Impact of Negative Events and Deciding About Emotion Regulation Strategies

  • Adnan ManzoorEmail author
  • Altaf Hussain Abro
  • Jan Treur
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)


Humans have a number of emotion regulation strategies at their disposal, from which in a particular situation one or more can be chosen. The focus of this paper is on the processes behind the choice of these regulation strategies. The paper presents a neurologically inspired cognitive computational model of a monitoring and decision mechanism for emotion regulation incorporating different strategies (expressive suppression, reappraisal or reinterpretation, and situation modification). It can be tuned to specific characteristics of persons and events.


Cognitive modeling Emotion Regulation 


  1. 1.
    Samson, A.C., Hardan, A.Y., Podell, R.W., Phillips, J.M., Gross, J.J.: Emotion regulation in children and adolescents with autism spectrum disorder. Autism Res. 8, 9–18 (2015)CrossRefGoogle Scholar
  2. 2.
    Balzarotti, S., John, O.P., Gross, J.J.: An Italian adaptation of the emotion regulation questionnaire. Eur. J. Psychol. Assess. 26, 61–67 (2010)CrossRefGoogle Scholar
  3. 3.
    Gross, J.J.: Emotion regulation: current status and future prospects. Psychol. Inq. 26, 1–26 (2015)CrossRefGoogle Scholar
  4. 4.
    Marsella, S., Gratch, J., Wang, N., Stankovic, B.: Assessing the validity of a computational model of emotional coping. In: 2009 3rd International Conference on Affective Computing and Intelligent Interaction and Workshops, pp. 1–8. IEEE (2009)Google Scholar
  5. 5.
    Webb, T.L., Gallo, I.S., Miles, E., Gollwitzer, P.M., Sheeran, P.: Effective regulation of affect: an action control perspective on emotion regulation. Eur. Rev. Soc. Psychol. 23(2012), 143–186 (2012)CrossRefGoogle Scholar
  6. 6.
    Bonanno, G.A., Burton, C.L.: Regulatory flexibility an individual differences perspective on coping and emotion regulation. Perspect. Psychol. Sci. 8, 591–612 (2013)CrossRefGoogle Scholar
  7. 7.
    Côté, S., Gyurak, A., Levenson, R.W.: The ability to regulate emotion is associated with greater well-being, income, and socioeconomic status. Emotion 10, 923–933 (2010)CrossRefGoogle Scholar
  8. 8.
    Van Dillen, L.F., Heslenfeld, D.J., Koole, S.L.: Tuning down the emotional brain: an fMRI study of the effects of cognitive load on the processing of affective images. Neuroimage 45, 1212–1219 (2009)CrossRefGoogle Scholar
  9. 9.
    Cuijpers, P., Van Straten, A., Warmerdam, L.: Behavioral activation treatments of depression: a meta-analysis. Clin. Psychol. Rev. 27, 318–326 (2007)CrossRefGoogle Scholar
  10. 10.
    Christopher, S., Trittschuh, E.H., Monti, J.M., Mesulam, M.-M., Egner, T.: Neural repetition suppression reflects fulfilled perceptual expectations. Nat. Neurosci. 11, 1004–1006 (2008)CrossRefGoogle Scholar
  11. 11.
    Gross, J.J.: Emotion regulation in adulthood: timing is everything. Curr. Dir. Psychol. Sci. 10, 214–219 (2001)CrossRefGoogle Scholar
  12. 12.
    Gross, J.J.: The Emerging field of emotion regulation: an integrative review. Rev. Gen. Psychol. 2, 271–299 (1998)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Gross, J.J., Thompson, R.A.: Emotion regulation: conceptual foundations. In: Gross, J.J. (ed.) Handbook of Emotion Regulation, pp. 3–24. Guilford Press, New York (2007)Google Scholar
  14. 14.
    Gross, J.J.: Emotion regulation: affective, cognitive, and social consequences. Psychophysiology 39, 281–291 (2002)CrossRefGoogle Scholar
  15. 15.
    Lazarus, R.S., Alfert, E.: Short-Circuiting of Threat by Experimentally Altering Cognitive Appraisal. The Journal of Abnormal and Social Psychology 69, 195–205 (1964)CrossRefGoogle Scholar
  16. 16.
    Dörfel, D., Lamke, J.-P., Hummel, F., Wagner, U., Erk, S., Walter, H.: Common and differential neural networks of emotion regulation by detachment, reinterpretation, distraction, and expressive suppression: a comparative fMRI investigation. Neuroimage 101, 298–309 (2014)CrossRefGoogle Scholar
  17. 17.
    Kim, M.J., Loucks, R.A., Palmer, A.L., Brown, A.C., Solomon, K.M., Marchante, A.N., Whalen, P.J.: The structural and functional connectivity of the amygdala: from normal emotion to pathological anxiety. Behav. Brain Res. 223, 403–410 (2011)CrossRefGoogle Scholar
  18. 18.
    Phelps, E.A., Delgado, M.R., Nearing, K.I., LeDoux, J.E.: Extinction learning in humans: role of the amygdala and vmPFC. Neuron 43, 897–905 (2004)CrossRefGoogle Scholar
  19. 19.
    Ochsner, K.N., Gross, J.J.: The neural bases of emotion and emotion regulation: a valuation perspective. In: Gross, J.J. (ed.) Handbook of Emotional Regulation, 2nd edn. Guilford, New York, pp. 23–41 (2014)Google Scholar
  20. 20.
    Treur, J.: Dynamic modeling based on a temporal-causal network modeling approach. Biol. Inspired Cogn. Archit. (2016, to appear).
  21. 21.
    Damasio, A.: The Feeling of What Happens: Body Emotion and the Making of Consciousness. Vintage, London (1999)Google Scholar
  22. 22.
    Abro, A.H., Manzoor, A., Tabatabaei, S.A., Treur, J.: A computational cognitive model integrating different emotion regulation strategies. Proced. Comput. Sci. 71, 157–168 (2015). Proc. BICA 2015CrossRefGoogle Scholar
  23. 23.
    Pentland, A.: Socially aware computation and communication. IEEE Comput. 38, 33–40 (2005)CrossRefGoogle Scholar
  24. 24.
    Pantic, M., Pentland, A., Nijholt, A., Huang, T.S.: Human computing and machine understanding of human behavior: a survey. In: Proceedings of the International Conference on Multimodal Interfaces, pp. 239–248 (2006)Google Scholar
  25. 25.
    Treur, J.: On human aspects in ambient intelligence. In: Mühlhäuser, M., Ferscha, A., Aitenbichler, E. (eds.) AmI 2007. CCIS, vol. 11, pp. 262–267. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85379-4_33 CrossRefGoogle Scholar
  26. 26.
    Bosse, T., Hoogendoorn, M., Klein, M.C.A., Treur, J.: A generic agent architecture for human-aware ambient computing. In: Mangina, E., et al. (eds.) Agent-Based Ubiquitous Computing, pp. 35–62. World Scientific Publishers, Atlantis Press, Singapore, Paris (2009)CrossRefGoogle Scholar
  27. 27.
    Marsella, S.C., Gratch, J.: EMA: a process model of appraisal dynamics. Cogn. Syst. Res. 10, 70–90 (2009)CrossRefGoogle Scholar
  28. 28.
    Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Series on Understanding Complex Systems, p. 503. Springer International Publishing, Switzerland (2016)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations