Advertisement

Agent-Based Simulation for Software Development Processes

  • Tobias AhlbrechtEmail author
  • Jürgen Dix
  • Niklas Fiekas
  • Jens Grabowski
  • Verena Herbold
  • Daniel Honsel
  • Stephan Waack
  • Marlon Welter
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)

Abstract

Software development is a costly process and requires serious quality control on the management level: Managing a project with more than 10 programmers over several years is a highly nontrivial task. We are building tools for helping the manager to predict the future development of the project based on certain adjustable parameters.

The main idea is to view the software process as agent-based simulation in a multiagent system (MAS). This approach requires combining three different areas: (1) mining patterns from past projects, (2) modeling the software development process in a multiagent environment, and (3) running the simulation on a scalable multiagent platform.

Keywords

Agents Simulation Software/management processes Software evolution Mining software repositories Conditional random fields 

Notes

Acknowledgment

The authors thank the SWZ Clausthal-Göttingen (https://www.simzentrum.de/en/) that partially funded our work (both the former projects “Simulation-based Quality Assurance for Software Systems” and “DeSim”, and the recent project “SimSe”).

References

  1. 1.
    Ahlbrecht, T., Dix, J., Fiekas, N.: Scalable multi-agent simulation based on mapreduce (forthcoming). Technical report IfI-16-03, TU Clausthal (2016). http://www.in.tu-clausthal.de/fileadmin/homes/techreports/ifi1603ahlbrecht.pdf
  2. 2.
    Ahlbrecht, T., Dix, J., Fiekas, N., Kraus, P., Müller, J.P.: An architecture for scalable simulation of systems of cognitive agents. Int. J. Agent-Oriented Softw. Eng. 5, 232–265 (2016)CrossRefGoogle Scholar
  3. 3.
    Bhattacharya, P., Iliofotou, M., Neamtiu, I., Faloutsos, M.: Graph-based analysis and prediction for software evolution. In: Proceedings of the 34th International Conference on Software Engineering (ICSE). IEEE (2012). ISBN 978-1-4673-1067-3Google Scholar
  4. 4.
    Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in AgentSpeak Using Jason. Wiley, Hoboken (2007). http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470029005.html. ISBN 9780470057476CrossRefzbMATHGoogle Scholar
  5. 5.
    Dalpiaz, F., Dix, J., van Riemsdijk, M.B. (eds.): EMAS 2014. LNCS. Springer, Cham (2014). doi: 10.1007/978-3-319-14484-9. ISBN 978-3-319-14483-2Google Scholar
  6. 6.
    Dong, Z., Wang, K., Dang, T.K.L., Gültas, M., Welter, M., Wierschin, T., Stanke, M., Waack, S.: CRF-based models of protein surfaces improve protein-protein interaction site predictions. BMC Bioinform. 15(1), 1–14 (2014). doi: 10.1186/1471-2105-15-277. http://dx.doi.org/10.1186/1471-2105-15-277. ISSN 1471-2105CrossRefGoogle Scholar
  7. 7.
    Honsel, D., Honsel, V., Welter, M., Grabowski, J., Waack, S.: Monitoring software quality by means of simulation methods. In: 10th International Symposium on Empirical Software Engineering and Measurement (ESEM) (2016)Google Scholar
  8. 8.
    Honsel, V., Honsel, D., Grabowski, J.: Software process simulation based on mining software repositories. In: ICDM Workshop (2014)Google Scholar
  9. 9.
    Honsel, V., Honsel, D., Herbold, S., Grabowski, J., Waack, S.: Mining software dependency networks for agent-based simulation of software evolution. In: ASE Workshop (2015)Google Scholar
  10. 10.
    Honsel, V., Herbold, S., Grabowski, J.: Hidden Markov models for the prediction of developer involvement dynamics and workload. In: 12th International Conference on Predictive Models and Data Analytics in Software Engineering (PROMISE) (2016)Google Scholar
  11. 11.
    Ising, E.: Beitrag zur Theorie des Ferromagnetismus. Zeitschrift für Physik A Hadrons and Nuclei (1925). ISSN 0044–3328Google Scholar
  12. 12.
    North, M.J., Collier, N.T., Ozik, J., Tatara, E.R., Macal, C.M., Bragen, M., Sydelko, P.: Complex adaptive systems modeling with repast simphony. Complex Adapt. Syst. Model. 1, 3 (2013)CrossRefGoogle Scholar
  13. 13.
    Radenski, A.: Using mapreduce streaming for distributed life simulation on the cloud. In: ECAL, pp. 284–291 (2013)Google Scholar
  14. 14.
    Smith, N., Ramil, J.F.: Agent-based simulation of open source evolution. In: Software Process Improvement and Practice (2006)Google Scholar
  15. 15.
    Wang, G., Vaz Salles, M., Sowell, B., Wang, X., Cao, T., Demers, A.J., Gehrke, J., White, W.M.: Behavioral simulations in mapreduce. CoRR, abs/1005.3773 (2010). http://arxiv.org/abs/1005.3773
  16. 16.
    Weiss, G.: Multiagent Systems. MIT Press, Cambridge (2013). ISBN 9780262018890Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Tobias Ahlbrecht
    • 1
    Email author
  • Jürgen Dix
    • 1
  • Niklas Fiekas
    • 1
  • Jens Grabowski
    • 2
  • Verena Herbold
    • 2
  • Daniel Honsel
    • 2
  • Stephan Waack
    • 2
  • Marlon Welter
    • 2
  1. 1.Department of InformaticsClausthal University of TechnologyClausthal-ZellerfeldGermany
  2. 2.Institute of Computer ScienceGeorg-August-Universität GöttingenGöttingenGermany

Personalised recommendations