Advertisement

Using Automated Approximate Satisfaction in Parameter Search for Dynamic Agent Models

  • Jan TreurEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)

Abstract

Numerical agent models often include a number of parameters. The values of such parameters are usually determined by using some numerical parameter tuning method based on numerical empirical data. However, in many cases no numerical empirical data are available, but properties for dynamic patterns are known that should be fulfilled, as requirements. Classical numerical parameter tuning methods normally cannot work with such dynamic properties, as they can only be true or false. To remedy this, in this paper the notion of approximate satisfaction of dynamic properties is introduced. It adds a numerical measure to the logical notion of satisfaction. By doing this, numerical optimization methods for parameter estimation become applicable to support the design of dynamic agent models for which dynamic properties have been specified as requirements.

References

  1. 1.
    Bosse, T., Jonker, C.M., van der Meij, L., Sharpanskykh, A., Treur, J.: Specification and verification of dynamics in agent models. Int. J. Coop. Inf. Syst. 18, 167–193 (2009)CrossRefGoogle Scholar
  2. 2.
    Chong, E.K.P., Zak, S.H.: An Introduction to Optimization. Wiley, Hoboken (2013)zbMATHGoogle Scholar
  3. 3.
    Dubois, D., Fargier, H., Prade, H.: Propagation and satisfaction of flexible constraints. In: Yager, R.R., Zadeh, L.A. (eds.) Fuzzy Sets, Neural Networks, and Soft Computing, pp. 166–187. Van Nostrand Reinhold, New York (1994)Google Scholar
  4. 4.
    Dubois, D., Fargier, H., Prade, H.: The calculus of fuzzy restrictions as a basis for flexible constraint satisfaction. In: Proceedings of 2nd IEEE International Conference on Fuzzy Systems, San Francisco, CA, pp. 1131–1136 (1993)Google Scholar
  5. 5.
    Dubois, D., Lang, J., Prade, H.: Fuzzy sets in approximate reasoning, Part 2: logical approaches. Fuzzy Sets Syst. 40, 203–244 (1991)CrossRefzbMATHGoogle Scholar
  6. 6.
    Dubois, D., Prade, H.: Possibility theory, probability theory and multiple-valued logics: a clarification. Ann. Math. Artif. Intell. 32, 35–66 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    van Dalen, D.: Logic and Structure, 3rd edn. Springer Verlag, New York (1994)CrossRefzbMATHGoogle Scholar
  8. 8.
    Ferber, J., Gutknecht, O., Jonker, C.M., Müller, J.P., J.P., and J. Treur: Organization Models and Behavioural Requirements Specification for Multi-Agent Systems. In: Y. Demazeau, F. Garijo (eds.) Multi-Agent System Organisations. Proceedings of the 10th European Workshop on Modelling Autonomous Agents in a Multi-Agent World, MAAMAW 2001 (2001)Google Scholar
  9. 9.
    Giangiacomo, G.: Fuzzy logic: Mathematical Tools for Approximate Reasoning. Kluwer Academic Publishers, Dordrecht (2001)zbMATHGoogle Scholar
  10. 10.
    Herlea, D.E., Jonker, C.M., Treur, J., Wijngaards, N.J.E.: Specification of bahavioural requirements within compositional multi-agent system design. In: Garijo, F.J., Boman, M., (eds.) MAAMAW 1999. LNCS, vol. 1647, pp. 8–27. Springer, Heidelberg (1999). doi: 10.1007/3-540-48437-X_2 CrossRefGoogle Scholar
  11. 11.
    Damian, D.E., Jonker, C.M., Treur, J., Wijngaards, N.J.: Integration of behavioural requirements specification within compositional knowledge engineering. Knowl.-Based Syst. 18, 353–365 (2005)CrossRefGoogle Scholar
  12. 12.
    Pohl, K., Rupp, C.: Requirements Engineering Fundamentals. Rocky Nook, Santa Barbara (2011)Google Scholar
  13. 13.
    Port, R.F., van Gelder, T.: Mind as Motion: Explorations in the Dynamics of Cognition. MIT Press, Cambridge (1995)Google Scholar
  14. 14.
    Rizk, A., Batt, G., Fages, F., Soliman, S.: Continuous valuations of temporal logic specifications with applications to parameter optimization and robustness measures. Theor. Comput. Sci. 412, 2827–2839 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sharpanskykh, A., Treur, J.: A temporal trace language for formal modelling and analysis of agent systems. In: Dastani, M., Hindriks, K.V., Meyer, J.J.C. (eds.) Specification and Verification of Multi-Agent Systems, pp. 317–352. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  16. 16.
    Strejc, V.: Least squares parameter estimation. Automatica 16, 535–550 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Treur, J.: Network-Oriented Modeling: Addressing Complexity of Cognitive, Affective and Social Interactions. Series in Understanding Complex Systems. Springer, Heidelberg (2016)CrossRefzbMATHGoogle Scholar
  18. 18.
    Van Lamsweerde, A.: Requirements Engineering: From System Goals to UML Models to Software Specifications. Wiley, Chichester (2009)Google Scholar
  19. 19.
    Zadeh, L.: Fuzzy sets as the basis for a theory of possibility. Fuzzy Sets Syst. 1, 3–28 (1978). Reprinted in Fuzzy Sets Syst. 100(Suppl.), 9–34 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Behavioural Informatics GroupVrije Universiteit AmsterdamAmsterdamThe Netherlands

Personalised recommendations