Self-adaptive Distribution System State Estimation

  • Alexandre PerlesEmail author
  • Guy Camilleri
  • Marie-Pierre Gleizes
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10207)


Electricity plays an increasingly important role in our society. Indeed, we are moving toward the era of “everything electric”. The needs evolving, it is mandatory to rethink the way electricity is produced and distributed. This then introduces the concept of an autonomous and intelligent power system called the Smart Grid.

One characteristic of the Smart Grid is its ability to control itself. To do this, papers in literature suggest that the state of the controlled network should be estimated.

This paper proposes an agent-based architecture to enable the transition to the Smart Grid, a design and an implementation of agent behaviors aiming at solving the State Estimation problem. Based on the Adaptive Multi-Agent System theory, the developed system allows from local interactions between agents to estimate in a reasonable time and computational complexity the state of a distribution system.


  1. 1.
    Ahat, M.: Smart grid and optimization. Am. J. Oper. Res. 03(01), 196–206 (2013)CrossRefGoogle Scholar
  2. 2.
    Bonjean, N., Mefteh, W., Gleizes, M.P., Maurel, C., Migeon, F.: ADELFE 2.0. In: Cossentino, Massimo, Hilaire, Vincent, Molesini, Ambra, Seidita, Valeria (eds.) Handbook on Agent-Oriented Design Processes, pp. 19–63. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-39975-6_3 CrossRefGoogle Scholar
  3. 3.
    Canadian Electricity Association: The smart grid : a pragmatic approach (2010)Google Scholar
  4. 4.
    Chilard, O., Grenard, S., Devaux, O., de Alvaro Garcia, L.: Distribution state estimation based on voltage state variables: assessment of results and limitations. In: 20th International Conference and Exhibition on Electricity Distribution - Part 1, CIRED 2009 (0524), pp. 1–4 (2009)Google Scholar
  5. 5.
    de Oliveira Saraiva, F., Asada, E.N.: Multi-agent systems applied to topological reconfiguration of smart power distribution systems. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 2812–2819, July 2014Google Scholar
  6. 6.
    Department of Energy: Communications requirements of smart grid technologies (2010)Google Scholar
  7. 7.
    Di Marzo Serugendo, G., Gleizes, M.P., Karageorgos, A.: Self-organising Software: From Natural to Artificial Adaptation. Springer, Heidelberg (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Eriksson, M., Armendariz, M., Vasilenko, O., Saleem, A., Nordstrom, L.: Multi-agent based distribution automation solution for self-healing grids. IEEE Trans. Ind. Electron. 0046(c), 1 (2015)Google Scholar
  9. 9.
    Ghazvini, M., Abedini, R., Pinto, T., Vale, Z.: Multiagent system architecture for short-term operation of integrated microgrids. IFAC Proc. 47(3), 6355–6360 (2014)CrossRefGoogle Scholar
  10. 10.
    International Energy Agency: Technology Roadmap, Smart Grid (2011)Google Scholar
  11. 11.
    Likith Kumar, M., Maruthi Prasanna, H., Ananthapadmanabha, T.: A literature review on distribution system state estimation. Procedia Technol. 21, 423–429 (2015)CrossRefGoogle Scholar
  12. 12.
    Lu, C., Teng, J., Liu, W.H.: Distribution system state estimation. IEEE Trans. Power Syst. 10(I), 229–240 (1995)CrossRefGoogle Scholar
  13. 13.
    Lu, Z.G., Zhang, J., Feng, T., Cheng, H.L.: Distributed agent-based state estimation considering controlled coordination layer. Int. J. Electr. Power Energy Syst. 54, 569–575 (2014)CrossRefGoogle Scholar
  14. 14.
    Lukovic, S., Kovac, E.B.: Adapting multi-agent systems approach for integration of prosumers in smart grids, pp. 1485–1491, July 2013Google Scholar
  15. 15.
    Monticelli, A.: Electric power system state estimation. Proc. IEEE 88(2), 262–282 (2000)CrossRefGoogle Scholar
  16. 16.
    Nguyen, P.H., Kling, W.L.: Distributed state estimation for multi-agent based active distribution networks (2010)Google Scholar
  17. 17.
    Powell, L.: Power System Load Flow Analysis (Professional Engineering). McGraw-Hill, New York (2004)Google Scholar
  18. 18.
    Roche, R.: Algorithmes et architectures multi-agents pour la gestion de l’énergie dans les réseaux électriques intelligents (2012)Google Scholar
  19. 19.
    Roytelman, I., Shahidehpour, S.M.: State estimation for electric power distribution systems in quasi real-time conditions. IEEE Trans. Power Deliv. 8(4), 2009–2015 (1993)CrossRefGoogle Scholar
  20. 20.
    Singer, J.: Enabling Tomorrow’s Electricity System: Report of the Ontario Smart Grid Forum (2010)Google Scholar
  21. 21.
    Videau, S.: Contrôle de processus dynamiques par systèmes multi-agents adaptatifs: application au contrôle de bioprocédés. Ph.D. thesis, July 2011Google Scholar
  22. 22.
    Voropai, N.I., Kolosok, I.N., Massel, L.V., Fartyshev, D.A., Paltsev, A.S., Panasetsky, D.A.: A multi-agent approach to electric power systems. In: Alkhateeb, F. (ed.) Multi-Agent Systems - Modeling, Interactions, Simulations and Case Studies. InTech (2011). doi: 10.5772/15708.
  23. 23.
    Yan, X.W., Shi, L.B., Yao, L.Z., Ni, Y.X., Bazargan, M.: A multi-agent based autonomous decentralized framework for power system restoration. In: 2014 International Conference on Power System Technology (POWERCON), pp. 871–876, October 2014Google Scholar
  24. 24.
    Zoka, Y., Yorino, N., Watanabe, M., Kurushima, T.: An optimal decentralized control for voltage control devices by means of a multi-agent system. In: 2014 Power Systems Computation Conference, Wroclaw, pp. 1–8 (2014). doi: 10.1109/PSCC.2014.7038469.

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Alexandre Perles
    • 1
    Email author
  • Guy Camilleri
    • 1
  • Marie-Pierre Gleizes
    • 1
  1. 1.Institut de Recherche en Informatique de ToulouseUniversité Fédérale de ToulouseToulouseFrance

Personalised recommendations