Advertisement

Rating Personalization Improves Accuracy: A Proportion-Based Baseline Estimate Model for Collaborative Recommendation

  • Zhenhua TanEmail author
  • Liangliang He
  • Hong Li
  • Xingwei Wang
Conference paper
Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series (LNICST, volume 201)

Abstract

Baseline estimate is an important latent factor for recommendations. The current baseline estimate model is widely used by characterizing both items and users. However, it doesn’t consider different users’ rating criterions and results in predictions may be out of recommendation’s rating range. In this paper, we propose a novel baseline estimate model to improve the current performance, named PBEModel (Proportion-based Baseline Estimate Model), which uses rating proportions to compute the rating personalization. The PBEModel is modeled as a piecewise function according to different rating personalization. In order to verify this new baseline estimate, we apply it into SVD++, and propose a novel SVD++ model named PBESVD++. Experiments based on six real datasets show that the proposed PBEModel is rational and more accurate than current baseline estimate model, and the PBESVD++ has relatively higher prediction accuracy than SVD++.

Keywords

Recommender system Latent factor model Baseline estimate model PBEModel PBESVD++ 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 61402097, No. 61572123 and No. 61502092; the National Science Foundation for Distinguished Young Scholars of China under Grant No. 61225012 and No. 71325002; the Natural Science Foundation of Liaoning Province of China under Grant No. 201602261; the Fundamental Research Funds for the Central Universities under Grant No. N151708005, and No. N151604001.

References

  1. 1.
    Goldberg, D., Nichols, D., Oki, B.M., et al.: Using collaborative filtering to weave an information tapestry. Commun. ACM 35(12), 61–70 (1992)CrossRefGoogle Scholar
  2. 2.
    Takács, G., Pilászy, I., Németh, B., et al.: Major components of the gravity recommendation system. ACM SIGKDD Explor. Newsl. 9(2), 80–83 (2007)CrossRefGoogle Scholar
  3. 3.
    Sarwar, B.M., Konstan, J.A., Borchers, A., et al.: Applying knowledge from KDD to recommender systems. Univ. Minnesota, Minneapolis 1(612), 625–4002 (1999)Google Scholar
  4. 4.
    Deerwester, S., Dumais, S.T., Furnas, G.W., et al.: Indexing by latent semantic analysis. J. Am. Soc. Inform. Sci. 41(6), 391 (1990)CrossRefGoogle Scholar
  5. 5.
    Hofmann, T.: Latent semantic models for collaborative filtering. ACM Trans. Inform. Syst. (TOIS) 22(1), 89–115 (2004)CrossRefGoogle Scholar
  6. 6.
    Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent dirichlet allocation. J. Mach. Learn. Res. 3, 993–1022 (2003)zbMATHGoogle Scholar
  7. 7.
    Koren, Y.: Factorization meets the neighborhood: a multifaceted collaborative filtering model. In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 426–434. ACM (2008)Google Scholar
  8. 8.
    Koren, Y.: Collaborative filtering with temporal dynamics. Commun. ACM 53(4), 89–97 (2010)CrossRefGoogle Scholar
  9. 9.
    Kumar, R., Verma, B.K., Rastogi, S.S.: Social popularity based SVD++ recommender system. Int. J. Comput. Appl. 87(14) (2014)Google Scholar
  10. 10.
    Guo, G., Zhang, J., Yorke-Smith, N.: TrustSVD: collaborative filtering with both the explicit and implicit influence of user trust and of item ratings. In: AAAI, pp. 123–129 (2015)Google Scholar
  11. 11.
    Wang, S., Ma, Y., Cheng, B., Yang, F.M.: Multi-dimensional QoS prediction for service recommendations. IEEE Trans. Serv. Comput., 12 (2016). doi: 10.1109/TSC.2016.2584058
  12. 12.
    Ma, Y., Xin, X., Wang, S., Li, J., Sun, Q., Yang, F.: QoS evaluation for web service recommendation. China Commun. 12(4), 151–160 (2015)CrossRefGoogle Scholar
  13. 13.
    Wang, S., Zheng, Z., Wu, Z., Micheal, R.L., Yang, F.: Reputation measurement and malicious feedback rating prevention in web service recommendation system. IEEE Trans. Serv. Comput. 8(5), 755–767 (2015)CrossRefGoogle Scholar
  14. 14.
    Jannach, D., Zanker, M., Felfernig, A., et al.: Recommender Systems: an Introduction. Cambridge University Press (2010)Google Scholar
  15. 15.
    Guo, G.: LibRec: A Java Library for Rcommender Systems[EB/OL] (2016). http://www.librec.net

Copyright information

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2017

Authors and Affiliations

  • Zhenhua Tan
    • 1
    Email author
  • Liangliang He
    • 1
  • Hong Li
    • 1
  • Xingwei Wang
    • 1
  1. 1.Software College of Northeastern UniversityShenyangChina

Personalised recommendations