Skip to main content

Abstract

In the real world, there are a lot of scenes from which the product is made by using the robot, which needs different assembly times to perform a given task, because of its capabilities and specialization. For a robotic assembly line balancing (rALB) problem, a set of tasks have to be assigned to stations, and each station needs to select one robot to process the assigned tasks. In this paper, we propose a hybrid genetic algorithm (hGA) based on an order encoding method for solving rALB problem. In the hGA, we use new representation method. Advanced genetic operators adapted to the specific chromosome structure and the characteristics of the rALB problem are used. In order to strengthen the search ability, a local search procedure is integrated under the framework the genetic algorithm. Some practical test instances demonstrate the effectiveness and efficiency of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. ALB: Assembly line balancing: Data sets & research topics (2016). http://www.assembly-line-balancing.de/

  2. Anderson EJ, Ferris MC (1994) Genetic algorithms for combinatorial optimization: the assemble line balancing problem. Informs J Comput 6(2):161–173

    Article  MATH  Google Scholar 

  3. Bautista J, Suarez R et al (2000) Local search heuristics for the assembly line balancing problem with incompatibilities between tasks. In: IEEE International Conference on Robotics and Automation, 2000, Proceedings, ICRA, pp 2404–2409

    Google Scholar 

  4. Brown EC, Sumichrast RT (2005) Evaluating performance advantages of grouping genetic algorithms. Eng Appl Artif Intell 18(1):1–12

    Article  Google Scholar 

  5. Daoud S, Chehade H et al (2014) Solving a robotic assembly line balancing problem using efficient hybrid methods. J Heuristics 20(3):235–259

    Article  Google Scholar 

  6. Falkenauer E, Delchambre A (1997) A genetic algorithm for bin packing and line balancing. In: IEEE International Conference on Robotics and Automation, 1992, Proceedings, vol 2, pp 1186–1192

    Google Scholar 

  7. Gao J, Sun L et al (2009) An efficient approach for type II robotic assembly line balancing problems. Comput Ind Eng 56(3):1065–1080

    Article  Google Scholar 

  8. Gen M, Cheng R (1997) Genetic Algorithms and Engineering Design. Wiley, New York

    Google Scholar 

  9. Gen M, Cheng R (2000) Genetic Algorithms and Engineering Optimization. Wiley, New York

    Google Scholar 

  10. Gen M, Tsujimura Y, Li Y (1996) Fuzzy assembly line balancing using genetic algorithms. Comput Ind Eng 31(31):631–634

    Article  Google Scholar 

  11. Gonçalves JF, Almeida JRD (2002) A hybrid genetic algorithm for assembly line balancing. J Heuristics 8(6):629–642

    Article  Google Scholar 

  12. Gutjahr AL, Nemhauser GL (1964) An algorithm for the line balancing problem. Manage Sci 11(2):308–315

    Article  MathSciNet  MATH  Google Scholar 

  13. Helgeson WB, Salveson ME, Smith WW (1954) How to Balance an Assembly Line. Technical Report Carr Press, New Caraan

    Google Scholar 

  14. Janardhanan MN, Nielsen P, Ponnambalam SG (2016) Application of particle swarm optimization to maximize efficiency of straight and U-shaped robotic assembly lines. Springer

    Google Scholar 

  15. Kim YK, Kim YJ, Kim Y (1996) Genetic algorithms for assembly line balancing with various objectives. Comput Ind Eng 30(3):397–409

    Article  Google Scholar 

  16. Kock S, Vittor T et al (2011) Robot concept for scalable, flexible assembly automation: a technology study on a harmless dual-armed robot. In: IEEE International Symposium on Assembly and Manufacturing, pp 1–5

    Google Scholar 

  17. Krasnogor N, Smith J (2000) A memetic algorithm with self-adaptive local search: TSP as a case study. In: Proceedings of 2000 Genetic and Evolutionary Computation Conference, pp 987–994

    Google Scholar 

  18. Levitin G, Rubinovitz J, Shnits B (2006) A genetic algorithm for robotic assembly line balancing. Eur J Oper Res 168(3):811–825

    Article  MathSciNet  MATH  Google Scholar 

  19. (Mansoor) EMDE (1973) Malbła heuristic technique for balancing large single-model assembly lines. IIE Trans 5(4):343–356

    Google Scholar 

  20. Mukund Nilakantan J, Ponnambalam SG et al (2015) Bio-inspired search algorithms to solve robotic assembly line balancing problems. Neural Comput Appl 26(6):1379–1393

    Article  Google Scholar 

  21. Nearchou AC (2007) Balancing large assembly lines by a new heuristic based on differential evolution method. Int J Adv Manufact Technol 34(9):1016–1029

    Article  Google Scholar 

  22. Rubinovitz J, Levitin G (1995) Genetic algorithm for assembly line balancing. Int J Prod Econ 41(41):343–354

    Article  MATH  Google Scholar 

  23. Rubinovitz J, Levitin G (1995) Genetic algorithm for line balancing. Int J Prod Econ 41:343–354

    Article  MATH  Google Scholar 

  24. Sabuncuoglu I, Erel E, Tanyer M (2000) Assembly line balancing using genetic algorithms. J Intell Manufact 11(3):295–310

    Article  Google Scholar 

  25. Scholl A (1993) Data of assembly line balancing problems. Schriften zur Quantitativen Betriebswirtschaftslehre

    Google Scholar 

  26. Scholl A (1999) Balancing and Sequencing of Assembly Lines. Physica-Verlag, Heidelberg

    Book  Google Scholar 

  27. Scholl A, Fliedner M, Boysen N (2010) Absalom: balancing assembly lines with assignment restrictions. Eur J Oper Res 200(3):688–701

    Article  MATH  Google Scholar 

  28. Tsujimura Y, Gen M, Kubota E (1995) Solving fuzzy assembly-line balancing problem with genetic algorithms. In: International Conference on Computers and Industrial Engineering, pp 543–547

    Google Scholar 

  29. Yoosefelahi A, Aminnayeri M et al (2012) Type II robotic assembly line balancing problem: an evolution strategies algorithm for a multi-objective model. J Manufact Syst 31(2):139–151

    Article  Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under Grant 61572100, and in part by the Grant-in-Aid for Scientific Research (C) of Japan Society of Promotion of Science (JSPS) No. 15K00357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Lin, L., Yao, C., Hao, X. (2018). An Order-Based GA for Robot-Based Assembly Line Balancing Problem. In: Xu, J., Gen, M., Hajiyev, A., Cooke, F. (eds) Proceedings of the Eleventh International Conference on Management Science and Engineering Management. ICMSEM 2017. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-59280-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59280-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59279-4

  • Online ISBN: 978-3-319-59280-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics