Skip to main content

A Priority-Based Genetic Representations for Bicriteria Network Design Optimizations

  • Conference paper
  • First Online:
Book cover Proceedings of the Eleventh International Conference on Management Science and Engineering Management (ICMSEM 2017)

Part of the book series: Lecture Notes on Multidisciplinary Industrial Engineering ((LNMUINEN))

  • 3742 Accesses

Abstract

Network design is one of the most important and most frequently encountered classes of optimization problems. It is a combinatory field in combinatorial optimization and graph theory. A lot of optimization problems in network design arose directly from everyday practice in engineering and management. Furthermore, network design problems are also important for complexity theory, an area in the common intersection of mathematics and theoretical computer science which deals with the analysis of algorithms. Recent advances in evolutionary algorithms (EAs) are interested to solve such practical network problems. However, various network optimization problems typically cannot be solved analytically. Usually we must design the different algorithm for the different type of network optimization problem depending on the characteristics of the problem. In this paper, we investigate the recent related researches, design and validate effective priority-based genetic representations for the typical network models, such as shortest path models (node selection and sequencing), spanning tree models (arc selection) and maximum flow models (arc selection and flow assignment) etc., that these models covering the most features of network optimization problems. Thereby validate that EA approaches can be effectively and widely used in network design optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abbasi S, Taghipour M (2015) An ant colony algorithm for solving bi-criteria network flow problems in dynamic networks. IT Eng 3(5):34–48

    Google Scholar 

  2. Ahuj RK, Magnanti TL, Orlin JB (1993) Network flows. Prentice Hall, New Jersey

    Google Scholar 

  3. Climaco JCN, Craveirinha JMF, Pascoal MMB (2003) A bicriterion approach for routing problems in multimedia networks. Networks 41(4):206–220

    Article  MathSciNet  MATH  Google Scholar 

  4. Craveirinha J, Maco J et al (2013) A bi-criteria minimum spanning tree routing model for mpls/overlay networks. Telecommun Syst 52(1):1–13

    Article  Google Scholar 

  5. Davis L, Orvosh D et al (1993) A genetic algorithm for survivable network design. In: Proceedings of 5th international conference on genetic algorithms, pp 408–415

    Google Scholar 

  6. Deb BK (2010) Optimization for engineering design: algorithms and examples. Prentice-Hall, New Delhi

    Google Scholar 

  7. Deb K (1989) Genetic algorithms in multimodal function optimization. Master’s thesis, University of Alabama

    Google Scholar 

  8. Deb K, Thiele L et al (2001) Scalable test problems for evolutionary multiobjective optimization. Wiley, Chichester

    MATH  Google Scholar 

  9. Dorigo M (1992) Optimization, learning and natural algorithms. PhD thesis, Politecnico di Milano

    Google Scholar 

  10. Duhamel C, Gouveia L et al (2012) Models and heuristics for the k-degree constrained minimum spanning tree problem with node-degree costs. Networks 60(1):1–18

    Article  MathSciNet  MATH  Google Scholar 

  11. Fawcett H (2014) Manual of political economy. Macmillan and co., London

    Google Scholar 

  12. Fogel LJ, Owens AJ, Walsh MJ (1966) Artificial intelligence through simulated evolution. Wiley, New York

    MATH  Google Scholar 

  13. Fonseca C, Fleming P (1995) An overview of evolutionary algorithms in multiobjective optimization. IEEE Trans Evol Comput 3(1):1–16

    Google Scholar 

  14. Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of np-completeness. W.H. Freeman, New York

    MATH  Google Scholar 

  15. Gen M (2006) Genetic algorithms and their applications. Springer, London

    Google Scholar 

  16. Gen M, Cheng R, Oren SS (2000) Network design techniques using adapted genetic algorithms. Springer, London

    Book  MATH  Google Scholar 

  17. Gen M, Cheng R, Lin L (2008) Network models and optimization: multiobjective genetic algorithm approach. Springer, London

    MATH  Google Scholar 

  18. Goldberg DE (1989) Genetic algorithms in search, optimization, and machine learning. Addison-Wesley Pub. Co., Boston

    MATH  Google Scholar 

  19. Hansen P (1979) Bicriterion path problems. In: Proceedings of 3rd conference multiple criteria decision making theory and application, pp 109–127

    Google Scholar 

  20. Hao X, Gen M et al (2015) Effective multiobjective EDA for bi-criteria stochastic job-shop scheduling problem. J Intell Manufact 28:1–13

    Google Scholar 

  21. Holland J (1975) Adaptation in Natural and Artificial System. MIT Press, Ann Arbor

    Google Scholar 

  22. Holland JH (1976) Adaptation. In: Rosen R, Snell FM (eds) Progress in theoretical biology IV

    Google Scholar 

  23. Hwang CL, Yoon K (1994) Multiple attribute decision making. Springer, Heidelberg

    Google Scholar 

  24. Ishibuchi H, Murata T (1998) A multi-objective genetic local search algorithm and its application to flowshop scheduling. Comput Ind Eng 28(3):392–403

    Google Scholar 

  25. Kennedy J, Eberhart R (2011) Particle swarm optimization. In: Proceeding of the IEEE international conference on neural networks, Piscataway, pp 1942–1948

    Google Scholar 

  26. Kennedy J, Eberhart R (2011) Particle swarm optimization. Morgan Kaufmann, San Francisco

    Google Scholar 

  27. Koza JR (1992) Genetic programming, the next generation. MIT Press, Cambridge

    Google Scholar 

  28. Koza JR (1994) Genetic programming II (videotape): the next generation. MIT Press, Cambridge

    Google Scholar 

  29. Liang W, Schweitzer P, Xu Z (2013) Approximation algorithms for capacitated minimum forest problems in wireless sensor networks with a mobile sink. IEEE Trans Comput 62(10):1932–1944

    Article  MathSciNet  Google Scholar 

  30. Lin L (2006) Node-based genetic algorithm for communication spanning tree problem. IEICE Trans Commun 89(4):1091–1098

    Article  Google Scholar 

  31. Lin L, Gen M (2008) An effective evolutionary approach for bicriteria shortest path routing problems. IEEJ Trans Electron Inf Syst 128(3):416–423

    Google Scholar 

  32. Mathur R, Khan I, Choudhary V (2013) Genetic algorithm for dynamic capacitated minimum spanning tree. Comput Technol Appl 4(3):404

    Google Scholar 

  33. Medhi D, Pioro M (2004) Routing, flow, and capacity design in communication and computer networks. Morgan Kaufmann Publishers, San Francisco

    MATH  Google Scholar 

  34. Piggott P, Suraweera F (1995) Encoding graphs for genetic algorithms: an investigation using the minimum spanning tree problem. Springer, Heidelberg

    Google Scholar 

  35. Raidl GR, Julstrom B (2003) Edge-sets: an effective evolutionary coding of spanning trees. IEEE Trans Evol. Comput. 7(3):225–239

    Article  Google Scholar 

  36. Rechenberg I (1973) Optimieriung technischer Systeme nach Prinzipien der biologischen Evolution. Frommann-Holzboog, Stuttgart

    Google Scholar 

  37. Ruiz E, Albareda-Sambola M et al (2015) A biased random-key genetic algorithm for the capacitated minimum spanning tree problem. Comput Oper Res 57:95–108

    Article  MathSciNet  MATH  Google Scholar 

  38. Schaffer JD (1985) Multiple objective optimization with vector evaluated genetic algorithms. In: International conference on genetic algorithms, pp 93–100

    Google Scholar 

  39. Schwefel HPP (1995) Evolution and Optimum Seeking: The Sixth Generation. Wiley, New York

    Google Scholar 

  40. Srinivas N, Deb K (1995) Multiobjective function optimization using nondominated sorting genetic algorithms. IEEE Trans Evol Comput 2(3):221–248

    Google Scholar 

  41. Steiner S, Radzik T (2008) Computing all efficient solutions of the biobjective minimum spanning tree problem. Comput Oper Res 35(1):198–211

    Article  MathSciNet  MATH  Google Scholar 

  42. Steuer RE (1986) Multiple criteria optimization theory computation and application Wiley series in probability and mathematical statistics. Probability and mathematical statistics. Wiley, New York

    Google Scholar 

  43. Torkestani JA (2013) Degree constrained minimum spanning tree problem: a learning automata approach. J Supercomput 64(1):226–249

    Article  MATH  Google Scholar 

  44. Torkestani JA, Meybodi MR (2012) A learning automata-based heuristic algorithm for solving the minimum spanning tree problem in stochastic graphs. J Supercomput 59(2):1035–1054

    Article  Google Scholar 

  45. Torkestani JA, Rezaei Z (2013) A learning automata based approach to the bounded-diameter minimum spanning tree problem. J Chin Inst Eng 36(6):749–759

    Article  Google Scholar 

  46. Vo\(\beta \) S, Martello S, et al (2012) Meta-heuristics: Advances and trends in local search paradigms for optimization

    Google Scholar 

  47. Zandieh M (2011) A novel imperialist competitive algorithm for bi-criteria scheduling of the assembly flowshop problem. Int J Prod Res 49(11):3087–3103

    Article  Google Scholar 

  48. Zhang Q, Ding L (2016) A new crossover mechanism for genetic algorithms with variable-length chromosomes for path optimization problems. Expert Syst Appl 60:183–189

    Article  Google Scholar 

  49. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength pareto evolutionary algorithm for multiobjective optimization. In: Evolutionary methods for design, optimization and control with applications to industrial problems. Proceedings of the Eurogen 2001, Athens, Greece, September

    Google Scholar 

Download references

Acknowledgements

This work is partly supported by the National Natural Science Foundation of China under Grant 61572100, and in part by the Grant-in-Aid for Scientific Research (C) of Japan Society of Promotion of Science (JSPS) No. 15K00357.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Lin, L., Zhao, J., Lu, S., Gen, M. (2018). A Priority-Based Genetic Representations for Bicriteria Network Design Optimizations. In: Xu, J., Gen, M., Hajiyev, A., Cooke, F. (eds) Proceedings of the Eleventh International Conference on Management Science and Engineering Management. ICMSEM 2017. Lecture Notes on Multidisciplinary Industrial Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-59280-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59280-0_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59279-4

  • Online ISBN: 978-3-319-59280-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics