Skip to main content

Design of Nonuniform Linear-Phase Transmultiplexer System for Communication

  • Chapter
  • First Online:
  • 721 Accesses

Abstract

This chapter presents an improved design technique for a nonuniform linear-phase transmultiplexer filter bank (FB) for communication system. In this method, initially a prototype filter for nonuniform transmultiplexer (TMUX) system is designed using different window functions that have high side-lobe falloff rate (SLFOR), and then filter coefficients of a prototype are optimized to satisfy perfect reconstruction (PR) condition using well-known linear search optimization technique. Performance of the proposed method is measured in terms of fidelity parameters such as intersymbol interference (ISI), interchannel or intercarrier interference (ICI), signal to intersymbol interference ratio (SISI) signal to interchannel interference ratio (SICI), and signal to total interference ratio (SI). The simulation results obtained depict that a very low values of ICI and ISI are resulted using various adjustable windows as compared to earlier proposed techniques.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Englewood Cliffs, NJ: Prentice- Hall.

    MATH  Google Scholar 

  2. Vishwakarma, A., Kumar, A., & Singh, G. K. (2016). Transmultiplexer filter bank systems: a research overview. International Journal of Signal and Imaging Systems Engineering, 9(3), 146–154.

    Article  Google Scholar 

  3. Kumar, A., Anurag, S., & Singh, G. K. (2015). An optimized cosine-modulated nonuniform filter bank design for subband coding of ECG signal. Journal of King Saud University - Engineering Sciences, 27(2), 158–169.

    Article  Google Scholar 

  4. Kumar, A., Singh, G. K., & Anand, R. S. (2011). A closed form design method for two-channel quadrature mirror filter banks. Signal Image and Video Processing, 5(1), 121–131.

    Article  Google Scholar 

  5. Eghbali, A., Johansson, H., & Löwenborg P. (2011). Reconfigurable nonuniform transmultiplexers using uniform modulated filter banks. IEEE Transactions on Circuits and Systems-I: Regular Paper, 58(3), 539–547.

    Article  MathSciNet  Google Scholar 

  6. Liang, L., Shi, G., & Xie, X. (2011). Non-uniform directional filter banks with arbitrary frequency partitioning. IEEE Transactions on Image Processing, 20(1), 283–289.

    Article  MathSciNet  Google Scholar 

  7. Xie, X. M., Chan, S. C., & Yuk, T. I. (2006). Design of linear-phase recombination nonuniform filter banks. IEEE Transactions on Signal Processing, 54(7), 2806–2814.

    Article  Google Scholar 

  8. Soni, R., Jain, A., & Saxena, R. (2013). An optimized design of nonuniform filter bank using variable-combinational window function. AEU - International Journal of Electronics and Communications, 67(7), 595–601.

    Article  Google Scholar 

  9. Xie, X. (2007). Design of nonuniform cosine-modulated filter-banks with the perfect-reconstruction property and arbitrary filter length. Progress in Natural Science, 17(3), 340–345.

    Article  MATH  Google Scholar 

  10. Liu, T., & Chen, T. (2001). Design of multi-channel nonuniform transmultiplexers using general building blocks. IEEE Transactions on Signal Processing, 49(1), 91–99.

    Article  Google Scholar 

  11. Ho C. Y. F., Ling B. W. K., Liu Y.,Tarn P. K. S., & Teo K. L. (2003). Optimum nonuniform transmultiplexer design. Proceedings of International Conference on Neural Networks and Signal Processing, ICNNSP'031, Nanjing, pp. 740–743.

    Google Scholar 

  12. Eghbali A., Johansson H., & Löwenborg P. (2008). An arbitrary-bandwidth transmultiplexer and its application to flexible frequency-band reallocation networks, European Conference on Circuit Theory and Design, Seville, pp. 248–251.

    Google Scholar 

  13. Eghbali, A., Johansson, H., & Lowenborg, P. L. (2008). A multimode transmultiplexer structure. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(3), 279–283.

    Article  Google Scholar 

  14. Eghbali A., Johansson H., & Löwenborg P. (2008). A Farrow structure based multimode transmultiplexer. Proceedings IEEE International Symposium on Circuits and Systems, Seattle, pp. 3114–3117.

    Google Scholar 

  15. Manoj, V. J., & Elias, E. (2012). Artificial bee colony algorithm for the design of multiplierless nonuniform filter bank transmultiplexer. Information Sciences, 192, 193–203.

    Article  Google Scholar 

  16. Manoj, V. J., & Elias, E. (2009). Design of multiplier-less nonuniform filter bank transmultiplexer using genetic algorithm. Signal Processing, 89(11), 2274–2285.

    Article  MATH  Google Scholar 

  17. Manoj V. J., & Elias E. (2009). On the design of multiplier-less nonuniform filter bank transmultiplexer using particle swarm optimization. World Congress on Nature and Biologically Inspired Computing, NABIC 2009 - Proceedings, Coimbatore, pp. 55–60.

    Google Scholar 

  18. Manoj, V. J., & Elizabeth, E. (2009). Design of nonuniform filter bank transmultiplexer with canonical signed digit filter coefficients. IET Signal Processing, 3(3), 211–220.

    Article  MathSciNet  Google Scholar 

  19. Lin, Y., & Vaidyanathan, P. P. (1998). A Kaiser window approach for the design of the prototype filters of cosine modulated filter bank. IEEE Signal Processing Letter, 5(6), 132–134.

    Article  Google Scholar 

  20. Cruz-Roldán, F., Lopez, P. A., Bascon, S. M., & Lawson, S. S. (2002). An efficient and simple method for designing prototype filters for cosine modulated pseudo QMF banks. IEEE Signal Processing Letters, 9(1), 29–31.

    Article  Google Scholar 

  21. Zhao, Y., Luo, S., & Wan, J. (2013). Modified design algorithm for cosine-modulated subband filter banks based on iteration. Journal of Data Acquisition and Processing, 28(1), 110–116.

    Google Scholar 

  22. Soni, R. K., Jain, A., & Saxena, R. (2013). A design of IFIR prototype filter for cosine modulated filter bank and transmultiplexer. AEU - International Journal of Electronics and Communications, 67(2), 130–135.

    Article  Google Scholar 

  23. Kumar, A., Singh, G. K., & Kuldeep, B. (2011). An improved and simplified approach for designing cosine modulated filter bank using window technique. Journal of Mathematical Modelling and Algorithms, 10(3), 213–226.

    Article  MATH  Google Scholar 

  24. Kumar, A., & Kuldeep, B. (2012). Design of cosine modulated filter bank using improved exponential window. Journal of Franklin Institute, 349(3), 1304–1315.

    Article  MathSciNet  MATH  Google Scholar 

  25. Datar, A., Jain, A., & Sharma, P. C. (2013). Design and performance analysis of adjustable window functions based cosine modulated filter banks. Digital Signal Processing, 23(1), 412–417.

    Article  MathSciNet  Google Scholar 

  26. Kumar, A., Singh, G. K., & Anand, R. S. (2011). A simple design method for the cosine modulated filter banks using weighted least square technique. Journal of the Franklin Institute, 348(1), 606–621.

    Article  MATH  Google Scholar 

  27. Berger, S. W. A., & Antoniou, A. (2007). An efficient closed form design method for cosine modulated filter banks using window function. Signal Processing, 87(5), 811–823.

    Article  MATH  Google Scholar 

  28. Kumar, A., Singh, G. K., & Anand, R. S. (2011). An improved closed form design method for the cosine modulated filter banks using windowing technique. Applied Soft Computing, 11(3), 3209–3217.

    Article  Google Scholar 

  29. Creusere, C. D., & Mitra, S. K. (1995). A simple method for designing high quality prototype filters for M-band pseudo QMF banks. IEEE Transactions on Signal Processing, 43(4), 1005–1007.

    Article  Google Scholar 

  30. Martin, P., Cruz-Roldan, F., & Saramaki, T. (2003). A windowing approach for designing critically sampled nearly perfect-reconstruction cosine-modulated transmultiplexers and filter banks. IEEE ISPA, 2, 755–760.

    Google Scholar 

  31. Martin, P., Cruz-Roldan, F., & Saramaki T. (2004). A new window for the design of cosine-modulated multirate systems. IEEE ISCAS, 3, 529–532.

    Google Scholar 

  32. Soni, R. K., Jain, A., & Saxena, R. (2010). An improved and simplified design of pseudo-transmultiplexer using Blackman window family. Digital Signal Processing, 20(3), 743–749.

    Article  Google Scholar 

  33. Vishwakarma, A., Kumar, A., & Singh, G. K. (2015). A prototype filter design for cosine modulated transmultiplexer using weighted constrained least squares technique. AEU-International Journal of Electronics and Communications, 69(6), 915–922.

    Article  Google Scholar 

  34. Mitra, S. K. (2006). Digital signal processing: A computer based approach. New York: McGraw Hill.

    Google Scholar 

  35. Saramaki, T. (1991). Adjustable windows for the design of FIR filters–a tutorial. 6th Mediterranean Electro-technical Conference, LJubljana, pp. 28–33.

    Google Scholar 

  36. Kumar, A., Singh, G. K., & Anurag, S. (2013). Design of nearly perfect reconstructed non-uniform filter bank by constrained Equiripple FIR technique. Applied Soft Computing, 13(1), 353–360.

    Article  Google Scholar 

  37. Cruz-Roldán, F., Bravo-Santos, Á. M., Martín-Martín, P., & Jiménez-Martínez, R. (2003). Design of multi-channel near-perfect-reconstruction transmultiplexers using cosine-modulated filter banks. Signal Processing, 83(5), 1079–1091.

    Article  MATH  Google Scholar 

  38. Singh, N., & Saxena, R. (2012). Novel window and its application in NPR type transmultiplexer design. Electrical and Electronic Engineering, 2(6), 342–350.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Vishwakarma, A., Kumar, A., Lee, HN. (2018). Design of Nonuniform Linear-Phase Transmultiplexer System for Communication. In: Dolecek, G. (eds) Advances in Multirate Systems . Springer, Cham. https://doi.org/10.1007/978-3-319-59274-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59274-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59273-2

  • Online ISBN: 978-3-319-59274-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics