Skip to main content

Advances in Multirate Filter Banks: A Research Survey

  • Chapter
  • First Online:
Advances in Multirate Systems

Abstract

In this chapter, a research survey on the design of multirate filter banks is presented. Digital filters and multirate filter bank have been widely employed in the field of digital signal processing (DSP). Nowadays, DSP is a very fundamental block of various applications such as in medical field, communication, weather forecasting, etc. Novel aspects, which are not yet considered in the field of multirate filter bank design, are also presented along with future direction of research works toward the prospective developments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sohn, S. W., Bin Lim, Y., Yun, J. J., Choi, H., & Bae, H. D. (2012). A filter bank and a self-tuning adaptive filter for the harmonic and inter-harmonic estimation in power signals. IEEE Transactions on Instrumentation and Measurement, 61(1), 64–73.

    Article  Google Scholar 

  2. Taskovski, D., & Koleva, L. (2012). Measurement of harmonics in power systems using near perfect reconstruction filter banks. IEEE Transactions on Power Delivery, 27(2), 1025–1026.

    Article  Google Scholar 

  3. Le, T. K. (2012). Automated method for scoring breast tissue microarray spots using Quadrature mirror filters and Support vector machines. 15th International Conference Information Fusion (FUSION). pp. 1868–1875.

    Google Scholar 

  4. Chandran, S. (2003). Scheme for subband adaptive beamforming array implementation using quadrature mirror filter banks. Electronics Letters, 39(12), 891–892.

    Article  Google Scholar 

  5. Chan, S. C., Pun, C. K. S., & Ho, K. L. (2004). New design and realization techniques for a class of perfect reconstruction two-channel FIR filterbanks and wavelets bases. IEEE Transactions on Signal Processing, 52(7), 2135–2141.

    Article  Google Scholar 

  6. Afonso, V. X., Tompkins, W. J., Nguyen, T. Q., & Luo, S. (1999). ECG beat detection using filter banks. IEEE Transactions on Biomedical Engineering, 46(2), 192–202.

    Article  Google Scholar 

  7. Chiang, H.-T., Phoong, S. M., & Lin, Y. P. (2007). Design of nonuniform filter bank transceivers for frequency selective channels. EURASIP Journal on Advances in Signal Processing, 2007, 061396.

    Google Scholar 

  8. Diniz P. S. R., Barcellos L. C. R., & Netto S. L. (2001). Design of cosine-modulated filter bank prototype filters using the frequency-response masking approach. 2001 I.E. International Conference on Acoustics, Speech, and Signal Processing Proceedings (Cat. No.01CH37221), Singapore, Singapore, 6, 3621–3624.

    Google Scholar 

  9. Deng, Y., Mathews, V. J., & Farhang-Boroujeny, B. (2007). Low-delay nonuniform pseudo-QMF banks with application to speech enhancement. IEEE Transactions on Signal Processing, 55(5), 2110–2121.

    Article  MathSciNet  Google Scholar 

  10. Alaya, S., Zoghlami, N., & Lachiri, Z. (2014). Speech enhancement based on perceptual filter bank improvement. International Journal of Speech Technology, 17(3), 253–258.

    Article  Google Scholar 

  11. Lian, J. A., & Wang, Y. (2014). Energy preserving QMF for image processing. IEEE Transactions on Image Processing, 23(7), 3166–3178.

    Article  MathSciNet  Google Scholar 

  12. Nawarathna, R., Oh, J., Muthukudage, J., Tavanapong, W., Wong, J., de Groen, P. C., & Tang, S. J. (2014). Abnormal image detection in endoscopy videos using a filter bank and local binary patterns. Neurocomputing, 144, 70–91.

    Article  Google Scholar 

  13. Crochiere, R., Webber, S., & Flanagan, J. (1976). Digital coding of speech in sub-bands. ICASSP ‘76. IEEE International Conference on Acoustics, Speech, and Signal Processing, 1, 233–236.

    Article  Google Scholar 

  14. Dolecek, G. J. (2002). Multirate systems: Design and applications. Hershey: Idea Group of Publishing.

    Book  Google Scholar 

  15. Vaidyanathan, P. P. (1993). Multirate systems and filter banks. Delhi: Dorling Kindersley.

    MATH  Google Scholar 

  16. Mitra, S. K. (2006). Digital signal processing: A computer based approach. Singapore: Tata McGraw Hill Edition.

    Google Scholar 

  17. Crochiere, R. E. (1977). On the design of subband coders for low-bit-rate speech communication. Bell System Technical Journal, 56(5), 747–770.

    Article  Google Scholar 

  18. Croisier A., Esteban D., & Galand C. (1976). Perfect channel splitting by use of interpolation/decimation/tree decomposition techniques. in International Conference on Information Sciences and Systems. Patras, Greece.

    Google Scholar 

  19. Esteban, D., & Galand, C. (1977). Application of quadrature mirror filters to split band voice coding schemes. ICASSP ‘77. International Conference on Acoustics, Speech, and Signal Processing, 2, 191–195.

    Article  Google Scholar 

  20. Fliege, N. J. (1994). Multirate digital signal processing: Multirate systems, filter banks, wavelets. New York, USA: Wiley.

    MATH  Google Scholar 

  21. Barnwell, T. (1982). Subband coder design incorporating recursive quadrature filters and optimum ADPCM coders. IEEE Transactions on Acoustics, 30(5), 751–765.

    Article  Google Scholar 

  22. Swaminathan, K., & Vaidyanathan, P. (1986). Theory and design of uniform DFT, parallel, quadrature mirror filter banks. IEEE Transactions on Circuits and Systems, 33(12), 1170–1191.

    Article  Google Scholar 

  23. Vaidyanathan, P., Regalia, P., & Mitra, S. (1987). Design of doubly-complementary IIR digital filters using a single complex all pass filter, with multirate applications. IEEE Transactions on Circuits and Systems, 34(4), 378–389.

    Article  Google Scholar 

  24. Chen, L. W., Jou, Y. D., & Hao, S. S. (2014). Design of two-channel quadrature mirror filter banks using minor component analysis algorithm. Circuits, Systems and Signal Processing, 34(5), 1549–1569.

    Article  MathSciNet  Google Scholar 

  25. Smith, M., & Barnwell, T. (1984). A procedure for designing exact reconstruction filter banks for tree-structured subband coders. ICASSP ‘84. IEEE International Conference on Acoustics, Speech, and Signal Processing, 9, 421–424.

    Article  Google Scholar 

  26. Mintzer, F. (1985). Filters for distortion-free two-band multirate filter Bank. IEEE Transactions on Acoustics, Speech, and Signal Processing, 33(3), 626–630.

    Article  Google Scholar 

  27. Kim, C. W., & Ansari, R. (1991). FIR/IIR exact reconstruction filter banks with applications to subband coding of images. Proceedings of 34th Midwest Symposium Circuits Systems, Monterey, CA, USA. pp. 2–5.

    Google Scholar 

  28. Mitra, S. K., Creusere, C. D., & Babic, H. (1992). A novel implementation of perfect reconstruction QMF banks using IIR filters for infinite length signals. Proceedings 1992 I.E. International Symposium on Circuits and Systems, 5, 2312–2315.

    Article  Google Scholar 

  29. Chen, S. G., Kao, M. C., & Chen, S. P. (1996). A new type of perfect-reconstruction QMF banks. Conference Record of The Thirtieth Asilomar Conference on Signals, Systems and Computer, 70(2), 1334–1338.

    Google Scholar 

  30. Chen, S. G., & Kao, M. C. (1998). Low-complexity, perfect reconstruction FIR QMF bank. Electronics Letters, 34(15), 1477–1478.

    Article  Google Scholar 

  31. Hezar, R., & Madisetti, V. K. (1998). Efficient implementation of two-band PR-QMF filterbanks. IEEE Signal Processing Letters, 5(4), 92–94.

    Article  Google Scholar 

  32. Smith, M. J. T., & Eddins, S. L. (1990). Analysis/synthesis techniques for subband image coding. IEEE Transactions on Acoustics, 38(8), 1446–1456.

    Article  Google Scholar 

  33. Masson, J., & Picel, Z. (1985). Flexible design of computationally efficient nearly perfect QMF filter banks. ICASSP ‘85. IEEE International Conference on Acoustics, Speech, and Signal Processing, 10, 541–544.

    Article  Google Scholar 

  34. Cox, R. (2003). The design of uniformly and non-uniformly spaced pseudo quadrature mirror filters. IEEE Transactions on Acoustics, 34(5), 1090–1096.

    Article  Google Scholar 

  35. Vetterli, M. (1987). A theory of multirate filter banks. IEEE Transactions on Acoustics, 35(3), 356–372.

    Article  Google Scholar 

  36. Koilpillai, R. D., & Vaidyanathan, P. P. (1992). Cosine-modulated FIR filter banks satisfying perfect reconstruction. IEEE Transactions on Signal Processing, 40(4), 770–783.

    Article  Google Scholar 

  37. Koilpillai, R. D., & Vaidyanathan, P. P. (1993). A spectral factorization approach to pseudo-QMF design. IEEE Transactions on Signal Processing, 41(1), 82.

    Article  MATH  Google Scholar 

  38. Kumar, A., Pooja, R., & Singh, G. K. (2016). An efficient closed-form design method for nearly perfect reconstruction of non-uniform filter bank. ISA Transactions, 61(1), 167–178.

    Article  Google Scholar 

  39. Schlichthärle, D. (2015). Digital filters – Basics and design. Springer.

    Google Scholar 

  40. Galand, C., & Esteban, D. (1983). Design and evaluation of parallel quadrature mirror filters (PQMF). IEEE International Conference on Acoustics, Speech, and Signal Processing, 8, 224–227.

    Article  Google Scholar 

  41. Nussbaumer, H. J., & Galand, C. (1983). Parallel filter banks using complex quadrature mirror filters (CQMF). In Proceeding of Eusipco, Erlangen, West Germany. pp. 69–72.

    Google Scholar 

  42. Crochiere, R. E., & Rabiner, L. R. (1983). Multirate digital signal processing, Prentice-hall signal processing series. Prentice-Hall: Englewood Cliffs.

    Google Scholar 

  43. Johnston, J. (1980). A filter family designed for use in quadrature mirror filter banks. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ‘80), 5, 291–294.

    Article  Google Scholar 

  44. Jain, V., & Crochiere, R. (1984). Quadrature mirror filter design in the time domain. IEEE Transactions on Acoustics, 32(2), 353–361.

    Article  Google Scholar 

  45. Chen, C. K., & Lee, J. H. (1992). Design of quadrature mirror filters with linear phase in the frequency domain. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 39(9), 593–605.

    Article  MATH  Google Scholar 

  46. Yang, R. H. (1994). Novel efficient approach for the design of equiripple quadrature mirror filters. IEEE Proceedings Vision, Image, and Signal Processing, 141(2), 95–100.

    Article  Google Scholar 

  47. Lim, Y. C., Yang, R. H., & Koh, S.-N. (1993). The design of weighted minimax quadrature mirror filters. IEEE Transactions on Signal Processing, 41(5), 1780–1789.

    Article  MATH  Google Scholar 

  48. Goh, C. K., Lim, Y. C., & Ng, C. S. (1996). Improved algorithm to design weighted minimax quadrature mirror filters. 1996 I.E. International Symposium on Circuits and Systems. Circuits and Systems Connecting the World (ISCAS 96), 2, 381–384.

    Article  Google Scholar 

  49. Goh, C. K., Lim, Y. C., & Ng, C. S. (1999). Improved weighted least squares algorithm for the design of quadrature mirror filters. IEEE Transactions on Signal Processing, 47(7), 1866–1877.

    Article  Google Scholar 

  50. Bregovic, R., & Saramaki, T. (2003). A general-purpose optimization approach for designing two-channel FIR filterbanks. IEEE Transactions on Signal Processing, 51(7), 1783–1791.

    Article  MathSciNet  MATH  Google Scholar 

  51. Vinod, A. P., & Premkumar, A. B. (2000). A generalized design of the quadrature mirror filters. WCC – ICSP 5th International Conference on Signal Processing Proceedings. 16th World Computer Congress, 1, 126–129.

    Article  Google Scholar 

  52. Premkumar, A. B., & Vinod, A. P. (2000). Modified design to eliminate passband anomaly in weighted minimax quadrature mirror filters. IEEE Signal Processing Letters, 7(8), 224–226.

    Article  Google Scholar 

  53. Vinod, A. P., Premkumar, A. B., & Tong, L. C. (2001). Novel approach to the design of weighted minimax quadrature mirror filters. 6th International Symposium Signal Processing and Its Applications ISSPA 2001 - Proceedings; 6 Tutorials Communication Image Processing Signal Analysis, 1, 33–35.

    Article  Google Scholar 

  54. Sunder, S., & Ramachandran, V. (1994). Design of equiripple nonrecursive digital differentiators and Hilbert transformers using a weighted least-squares technique. IEEE Transactions on Signal Processing, 42(9), 2504–2509.

    Article  Google Scholar 

  55. Goh, C. K., & Lim, Y. C. (1997). An efficient weighted Lp algorithm for the design of quadrature mirror filters. IEEE Signal Processing Letters, 4(3), 79–81.

    Article  Google Scholar 

  56. Jou, Y. D. (2007). Design of two channel linear phase QMF bank based on neural networks. Signal Processing, 87(5), 1031–1044.

    Article  MATH  Google Scholar 

  57. Selesnick, I. W., Lang, M., & Burrus, C. S. (1996). Constrained least square design of FIR filters without specified transition bands. IEEE Transactions on Signal Processing, 44(8), 1879–1892.

    Article  Google Scholar 

  58. Horng, B. R., & Willson, A. N. (1992). Lagrange multiplier approaches to the design of two-channel perfect-reconstruction linear-phase FIR filter banks. IEEE Transactions on Signal Processing, 40(2), 364–374.

    Article  Google Scholar 

  59. Tuncer, T. E., & Nguyen, T. Q. (1995). General analysis of two-band QMF banks. IEEE Transactions on Signal Processing, 43(2), 544–548.

    Article  Google Scholar 

  60. Nguyen, T. Q. (1995). Digital filter bank design quadratic-constrained formulation. IEEE Transactions on Signal Processing, 43(9), 2103–2108.

    Article  Google Scholar 

  61. Saghizadeh, P., & Wilson, A. N. (1994). Using unconstrained optimization in the design of two-channel perfect-reconstruction linear-phase FIR filter banks. Proceedings of 1994 37th Midwest Symposium on Circuits and Systems, 2, 1053–1056.

    Article  Google Scholar 

  62. Bregovic, R., & Saramäki, T. (2000). Design of two-channel low-delay FIR filter banks using constrained optimization. Journal of Computing and Information Technology, 4, 341–348.

    Article  MATH  Google Scholar 

  63. Sahu, O. P., Soni, M. K., & Talwar, I. M. (2006). Marquardt optimization method to design two-channel quadrature mirror filter banks. Digital Signal Processing A Review Journal, 16(6), 870–879.

    Article  Google Scholar 

  64. Kumar, A., Singh, G. K., & Anand, R. S. (2010). An improved method for designing quadrature mirror filter banks via unconstrained optimization. Journal of Mathematical Modelling and Algorithms, 9(1), 99–111.

    Article  MathSciNet  MATH  Google Scholar 

  65. Kumar, A., Singh, G. K., & Anand, R. S. (2013). An improved method for the design of quadrature mirror filter banks using the Levenberg Marquardt optimization. Signal, Image and Video Processing, 7(2), 209–220.

    Article  Google Scholar 

  66. Kumar, A., Rafi, S. M., & Singh, G. K. (2012). A hybrid method for designing linear-phase quadrature mirror filter bank. Digital Signal Processing A Review Journal, 22(3), 453–462.

    Article  MathSciNet  Google Scholar 

  67. Nayebi, K., Barnwell, T. P., & Smith, M. J. T. (1994). Low delay FIR filter banks: Design and evaluation. IEEE Transactions on Signal Processing, 42(1), 24–31.

    Article  Google Scholar 

  68. Xu, H., Lu, W.-S., & Antoniou, A. (1998). An improved method for the design of FIR quadrature mirror-image filter banks. IEEE Transactions on Signal Processing, 46(5), 1275–1281.

    Article  Google Scholar 

  69. Lu, W.-S., Xu, H., & Antoniou, A. (1998). A new method for the design of FIR quadrature mirror-image filter banks. IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing, 45(7), 922–926.

    Article  Google Scholar 

  70. Abdel-Raheem, E., El-Guibaly, F., & Antoniou, A. (1996). Design of low-delay two-channel FIR filter banks using constrained optimization. Signal Processing, 48(3), 183–192.

    Article  Google Scholar 

  71. Chao, H. C. (2000). Two-channel filter banks satisfying low-delay and perfect-reconstruction design. Signal Processing, 80(3), 465–479.

    Article  MATH  Google Scholar 

  72. Kliewer, J., & Brka, E. (2006). Near-perfect-reconstruction low-complexity two-band IIR/FIR QMF banks with FIR phase-compensation filters. Signal Processing, 86(1), 171–181.

    Article  MATH  Google Scholar 

  73. Kayabol, K., & Akman, E. T. (2005). The peak-constrained optimization of stable linear-phase IIR PRQMF bank. AEU - International Journal of Electronics and Communications, 59(1), 8–14.

    Article  Google Scholar 

  74. Abo-Zahhad, M. (2003). Current state and future directions of multirate filter banks and their applications. Digital Signal Processing, 13(3), 495–518.

    Article  MathSciNet  Google Scholar 

  75. Nguyen, T. Q. (1994). Near-perfect-reconstruction pseudo-QMF banks. IEEE Transactions on Signal Processing, 42(1), 65–76.

    Article  Google Scholar 

  76. Nussbaumer, H. (1981). Pseudo QMF Bank. IBM Technical Disclosure Bulletin, 24(6), 3081–3087.

    Google Scholar 

  77. Rothweiler, J. (1983). Polyphase quadrature filters – a new subband coding technique. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP ‘83), 8, 1280–1283.

    Article  Google Scholar 

  78. Creusere, C. D., & Mitra, S. K. (1995). Simple method for designing high-quality prototype filters for M-band pseudo QMF banks. IEEE Transactions on Signal Processing, 43(4), 1005–1007.

    Article  Google Scholar 

  79. Vaidyanathan, P. P. (1998). A Kaiser window approach for the design of prototype filters of cosine modulated filterbanks. IEEE Signal Processing Letters, 5(6), 132–134.

    Article  Google Scholar 

  80. Cruz-Roldán, F., Amo-López, P., Maldonado-Bascón, S., & Lawson, S. S. (2002). An efficient and simple method for designing prototype filters for cosine-modulated pseudo-QMF banks. IEEE Signal Processing Letters, 9(1), 29–31.

    Article  Google Scholar 

  81. Cruz-Roldán, F., Bravo-Santos, Á. M., Martín-Martín, P., & Jiménez-Martínez, R. (2003). Design of multi-channel near-perfect-reconstruction transmultiplexers using cosine-modulated filter banks. Signal Processing, 83(5), 1079–1091.

    Article  MATH  Google Scholar 

  82. Jain, A., Saxena, R., & Saxena, S. C. (2006). An improved and simplified design of cosine-modulated pseudo-QMF filterbanks. Digital Signal Processing, 16(3), 225–232.

    Article  Google Scholar 

  83. Datar, A., Jain, A., & Sharma, P. C. (2010). Design of Kaiser window based optimized prototype filter for cosine modulated filter banks. Signal Processing, 90(5), 1742–1749.

    Article  MATH  Google Scholar 

  84. Kumar, A., Singh, G. K., & Kuldeep, B. (2011). An improved and simplified approach for designing cosine modulated filter Bank using window technique. Journal of Mathematical Modelling and Algorithms, 10(3), 213–226.

    Article  MATH  Google Scholar 

  85. Kumar, A., & Kuldeep, B. (2012). Design of M-channel cosine modulated filter bank using modified exponential window. Journal of the Franklin Institute, 349(3), 1304–1315.

    Article  MathSciNet  MATH  Google Scholar 

  86. Kumar, A., & Kuldeep, B. (2014). Design of cosine modulated pseudo QMF bank using modified Dolph-Chebyshev window. International Journal of Signal and Imaging Systems Engineering, 7(2), 126–133.

    Google Scholar 

  87. Bergen, S. W. A., & Antoniou, A. (2007). An efficient closed-form design method for cosine-modulated filter banks using window functions. Signal Processing, 87(5), 811–823.

    Article  MATH  Google Scholar 

  88. Kumar, A., Singh, G. K., & Anand, R. S. (2011). An improved closed form design method for the cosine modulated filter banks using windowing technique. Applied Soft Computing Journal, 11(3), 3209–3217.

    Article  Google Scholar 

  89. Bergen, S. W. A. (2008). A design method for cosine-modulated filter banks using weighted constrained-least-squares filters. Digital Signal Processing A Review Journal, 18(3), 282–290.

    Article  MathSciNet  Google Scholar 

  90. Kumar, A., Singh, G. K., & Anand, R. S. (2011). A simple design method for the cosine-modulated filter banks using weighted constrained least square technique. Journal of the Franklin Institute, 348(4), 606–621.

    Article  MATH  Google Scholar 

  91. Cruz-Roldán, F., Martín-Martín, P., Sáez-Landete, J., Blanco-Velasco, M., & Saramäki, T. (2009). A fast windowing-based technique exploiting spline functions for designing modulated filter banks. IEEE Transactions on Circuits and Systems—I: Regular Papers, 56(1), 168–178.

    Article  MathSciNet  Google Scholar 

  92. Cruz-roldán, F., Santamaría, I., Bravo, Á. M., & Member, S. (2004). Frequency sampling design of prototype filters for filter banks nearly perfect reconstruction cosine-modulated filter banks. IEEE Signal Processing Letters, 11(3), 397–400.

    Article  Google Scholar 

  93. Kokare, M., Chatterji, B. N., & Biswas, P. K. (2004). Cosine-modulated wavelet based texture features for content-based image retrieval. Pattern Recognition Letters, 25(4), 391–398.

    Article  Google Scholar 

  94. Argenti, F. (2002). Design of cosine-modulated filterbanks for partial spectrum reconstruction. Signal Processing, 82(3), 389–405.

    Article  MathSciNet  MATH  Google Scholar 

  95. Yin, S. S., Chan, S. C., & Tsui, K. M. (2008). On the design of nearly-PR and PR FIR cosine modulated filter banks having approximate cosine-roll-off transition band. IEEE Transactions on Circuits and Systems II: Express Briefs, 55(6), 571–575.

    Article  Google Scholar 

  96. Hameed, K. M. A., & Elias, E. (2006). M-channel cosine modulated filter banks with linear phase analysis and synthesis filters. Signal Processing, 86(12), 3842–3848.

    Article  MATH  Google Scholar 

  97. Duan, Z., Zhang, J., Zhang, C., & Mosca, E. (2006). A simple design method of reduced-order filters and its applications to multirate filter bank design. Signal Processing, 86(5), 1061–1075.

    Article  MATH  Google Scholar 

  98. Malvar, H. S. (1990). Modulated QMF filter banks with perfect reconstruction. Electronics Letters, 26(13), 906–907.

    Article  Google Scholar 

  99. Park, S. Y., & Cho, N. I. (2006). Design of signed powers-of-two coefficient perfect reconstruction QMF bank using CORDIC algorithms. IEEE Transactions on Circuits and Systems—I: Regular Papers, 53(6), 1254–1265.

    Article  Google Scholar 

  100. Baicher, G. S. (2007). Optimal Design of a Class of M-channel uniform filter Bank using genetic algorithms. IEEE International Conference on Signal Processing, Communications, 24–27.

    Google Scholar 

  101. Upendar, J., Gupta, C. P., & Singh, G. K. (2010). Design of two-channel quadrature mirror filter bank using particle swarm optimization. Digital Signal Processing A Review Journal, 20(2), 304–313.

    Article  Google Scholar 

  102. Rafi, S. M., Kumar, A., & Singh, G. K. (2013). An improved particle swarm optimization method for multirate filter bank design. Journal of the Franklin Institute, 350(4), 757–769.

    Article  MathSciNet  MATH  Google Scholar 

  103. Zhu, Y., Huang, C., & Tao, W. (2010). Frequency domain optimization design of linear phase cosine modulated filter banks. 2010 International Conference on Measuring Technology and Mechatronics Automation ICMTMA, 2(4), 313–316.

    Article  Google Scholar 

  104. Tan, F., Zhang, T., Gao, C., & Huang, L. (2011). Optimal design of cosine modulated filter banks using quantum-behaved particle swarm optimization algorithm. Proceedings – 4th International Congress on Image and Signal Processing CISP 2011, 5, 2280–2284.

    Article  Google Scholar 

  105. Kuldeep, B., Singh, V. K., Kumar, A., & Singh, G. K. (2015). Design of quadrature mirror filter bank based on nature inspired optimization based fractional derivative constraints. ISA Transactions (Elsevier), 54, 101–116.

    Article  Google Scholar 

  106. Kuldeep, B., Kumar, A., & Singh, G. K. (2015). Design of multi-channel cosine modulated filter bank based on fractional derivative constraints using cuckoo search algorithm. Circuits, Systems, and Signal Processing (Springer), 34(10), 3325–3351.

    Article  Google Scholar 

  107. Kuldeep, B., Kumar, A., & Singh, G. K. (2015). Hybrid method for designing digital FIR filters based on fractional derivative constraints. ISA Transactions, 58, 493–508.

    Article  Google Scholar 

  108. Baderia, K., Kumar, A., & Singh, G. K. (2015). Design of quadrature mirror filter bank using polyphase components based on optimal fractional derivative constraints. AEU International Journal of Electronics and Communications (Elsevier), 69(9), 1254–1264.

    Article  Google Scholar 

  109. Kuldeep, B., Kumar, A., & Singh, G. K. (2015). Design of quadrature mirror filter bank using Lagrange multiplier method based on fractional derivative constraints. Engineering Science and Technology, an International Journal (Elsevier), 18(2), 235–243.

    Article  Google Scholar 

  110. Kuldeep, B., Kumar, A., & Singh, G. K. (2015). Design of multi-channel filter bank using ABC optimized fractional derivative constraints. IEEE Conference on Communication and Signal Processing (ICCSP), 2, 490–494.

    Google Scholar 

  111. Kuldeep, B., Kumar, A., & Singh, G. K. (2015). PSO based optimized fractional derivative constraints for designing M-channel filter bank. IEEE Conference on Signal Processing Computing and Control (ISPCC), 3, 140–144.

    Google Scholar 

  112. Baderia, K., Kumar, A., & Singh, G. K. (2016). An improved method for designing cosine modulated filter bank using polyphase components. IEEE conference on Signal Processing & Integrated Networks (SPIN), 9-13, 11–12.

    Google Scholar 

  113. Jou, Y. D., & Chen, F. K. (2011). WLS design of FIR Nyquist filter based on neural networks. Digital Signal Process. A Review Journal, 21(1), 17–24.

    Article  Google Scholar 

  114. Chen, L. W., Jou, Y. D., Chen, F. K., & Hao, S. S. (2014). Eigen filter design of linear-phase FIR digital filters using neural minor component analysis. Digital Signal Processing, 32, 146–155.

    Article  Google Scholar 

  115. Mehendale, M., Sherlekar, S. D., & Venkatesh, G. (1995). Synthesis of multiplierless FIR filters with minimum number of additions. In Proceedings of the 1995 IEEE/ACM International conference on computer-aided design (pp. 668–671). Los Alamitos: IEEE Computer Society Press.

    Google Scholar 

  116. Sandhiya, V., Karthick, S., & Valarmathy, M. (2014). A survey of new reconfigurable architectures for implementing FIR filters with low complexity. International Conference on Computer Communication and Informatics IEEE, 2014, 1–9.

    Google Scholar 

  117. Parhi, K. K. (2007). VLSI digital signal processing systems: Design and implementation. Singapore: Wiley.

    Google Scholar 

  118. Hewlitt, R. M., & Swartzlantler, E. S. (2000), Canonical seigned digit representation for FIR digital filters. IEEE Work. SiGNAL Processing System SiPS 2000 Design Implementation (Cat. No.00TH8528), IEEE, Lafayette, LA, USA. pp. 416–26.

    Google Scholar 

  119. Aktan, M., Yurdakul, A., & Dundar, G. (2008). An algorithm for the design of low-power hardware-efficient FIR filters. IEEE Transactions on Circuits and Systems—I: Regular Papers, 55(6), 1536–1545.

    Google Scholar 

  120. Fuller, A. T. G., Nowrouzian, B., & Ashrafzadeh, F. (1998). Optimization of FIR digital filters over the canonical signed-digit coefficient space using genetic algorithms. Midwest Symposium Circuits and Systems (Cat. No. 98CB36268), IEEE Computer Society, Notre Dame, IN, USA. pp. 456–459.

    Google Scholar 

  121. Park, I.-C., & Kang, H.-J. (2002). Digital filter synthesis based on an algorithm to generate all minimal signed digit representations. IEEE Transactions on Computer Design Integration Circuits and Systems, 21(12), 1525–1529.

    Google Scholar 

  122. Goel, N., & Nandi, A. (2015), Design of FIR Filter Using FCSD Representation. In Computational Intelligence & Communication Technology (CICT), 2015 I.E. International Conference on, Ghaziabad, India. pp. 617–620.

    Google Scholar 

  123. Samadi, P., & Ahmad, M. (2003). Performance analysis of genetic algorithm for the design of linear phase digital filterbanks with CSD coefficients. Third International Conference on Natural Computation (ICNC), 3, 150–154.

    Google Scholar 

  124. Yang, X. S., & Deb, S. (2010). Engineering optimisation by cuckoo search. International Journal of Mathematical Modelling and Numerical Optimisation, 1(4), 330–343.

    Article  MATH  Google Scholar 

  125. Yang, X. S., & Deb, S. (2013). Multiobjective cuckoo search for design optimization. Computers & Operations Research, 40(6), 1616–1624.

    Article  MathSciNet  MATH  Google Scholar 

  126. Civicioglu, P., & Besdok, E. (2013). A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms. Artificial Intelligence Review, 39(4), 315–346.

    Article  Google Scholar 

  127. Chiaradonna, S., Giandomenico, F. D., & Murru, N. (2015). On enhancing efficiency and accuracy of particle swarm optimization algorithms. International Journal of Innovative Computing, Information and Control, 11(4), 1165–1189.

    Google Scholar 

  128. Ratanavilisagul, C., & Kruatrachue, B. (2014). A modified particle swarms optimization with mutation and reposition. International Journal of Innovative Computing, Information and Control, 10(6), 2127–2142.

    Google Scholar 

  129. Bindiya, T. S., & Elias, E. (2013). Modified metaheuristic algorithms for the optimal design of multiplierless non-uniform channel filters. Springer Journal of Circuits Systems and Signal Processing, 33(3), 815–837.

    Article  Google Scholar 

  130. Reddy, K. S., & Sahoo, S. K. (2015). An approach for FIR filters coefficient optimization using differential evolution algorithm. International Journal of Electronics and Communications, 69(12), 101–108.

    Article  Google Scholar 

  131. Misra, D., Dhabal, S., & Venkateswaran, P. (2015), Quadrature mirror filterbank with canonical signed digit representation using linear optimization algorithm. Third International Conference on Computer Communication Control and Information Technology (C3IT), Hooghly, India. pp. 1–6.

    Google Scholar 

  132. Kalathil, S., & Elias, E. (2015). Non uniform cosine modulated filterbanks using meta-heuristic algorithms in CSD space. Journal of Advanced Research, 6(6), 839–849.

    Google Scholar 

  133. Elias, E. (2015). Design of multiplierless sharp transition width non-uniform filterbanks using gravitational search algorithm. International Journal of Electronics, 102(1), 48–70.

    Article  Google Scholar 

  134. Sharma, I., Kumar, A., Singh, G. K., & Lee, H. N. (2017). Design of Multiplier less prototype filter for two-channel Filterbank using hybrid method in FCSD space. IET Circuit Device and System, 11(1), 29–40.

    Article  Google Scholar 

  135. Sharma, I., Kumar, A., & Singh, G. K. (2017). An efficient method for designing multiplierless non-uniform filterbank based on hybrid method using CSE technique. Circuit System and Signal Processing, 36(3), 1169–1191.

    Article  Google Scholar 

  136. Sharma, I., Kumar, A., & Singh, G. K. (2016). Adjustable window based design of multiplierless cosine modulated filterbank using swarm optimization algorithms. AEU-International Journal of Electronics and Communications, 70(1), 85–94.

    Article  Google Scholar 

  137. Sharma, I., Kuldeep, B., Kumar, A., & Singh, V. K. (2016). Performance of swarm based optimization techniques for designing digital FIR filter: A comparative study. Engineering Science and Technology, an International Journal, 19(3), 1564–1572.

    Article  Google Scholar 

  138. Sharma, I., Kumar, A., & Singh, G. K. (2016). Design of two channel multiplierless filterbank using common sub-expression elimination. Signal and Information Processing (IConSIP), International Conference on. IEEE. Vishnupuri, India

    Google Scholar 

  139. Sharma, I., Kumar, A., & Singh, G. K., & Lee H. N. (2016). Design of multiplierless cosine modulated filterbank using hybrid technique in sub-expression space. Digital Signal Processing (DSP), 2016 IEEE International conference on. IEEE. Beijing, China.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Kumar, A., Kuldeep, B., Sharma, I., Singh, G.K., Lee, H.N. (2018). Advances in Multirate Filter Banks: A Research Survey. In: Dolecek, G. (eds) Advances in Multirate Systems . Springer, Cham. https://doi.org/10.1007/978-3-319-59274-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59274-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59273-2

  • Online ISBN: 978-3-319-59274-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics