Skip to main content

Equilibrium Computation in Atomic Splittable Singleton Congestion Games

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

Abstract

We devise the first polynomial time algorithm computing a pure Nash equilibrium for atomic splittable congestion games with singleton strategies and player-specific affine cost functions. Our algorithm is purely combinatorial and computes the exact equilibrium assuming rational input. The idea is to compute a pure Nash equilibrium for an associated integrally-splittable singleton congestion game in which the players can only split their demands in integral multiples of a common packet size. While integral games have been considered in the literature before, no polynomial time algorithm computing an equilibrium was known. Also for this class, we devise the first polynomial time algorithm and use it as a building block for our main algorithm.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 1–22 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhaskar, U., Fleischer, L., Hoy, D., Huang, C.-C.: Equilibria of atomic flow games are not unique. Math. Oper. Res. 40(3), 634–654 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Efficient computation of approximate pure Nash equilibria in congestion games. In: FOCS, Palm Springs, CA, USA, pp. 532–541 (2011)

    Google Scholar 

  5. Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3(1), 2 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3), 14:1–14:55 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econom. Behav. 71(2), 315–327 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks. Oper. Res. 57(6), 1421–1437 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Deligkas, A., Fearnley, J., Spirakis, P.: Lipschitz continuity and approximate equilibria. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 15–26. Springer, Heidelberg (2016). doi:10.1007/978-3-662-53354-3_2

    Chapter  Google Scholar 

  11. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Babai, L. (ed.) STOC, pp. 604–612 (2004)

    Google Scholar 

  12. Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in games with player-specific linear latency functions. ACM Trans. Algorithms 7(3), 1–31 (2011)

    Article  MATH  Google Scholar 

  13. Groenevelt, H.: Two algorithms for maximizing a separable concave function over a polymatroid feasible region. Eur. J. Oper. Res. 54(2), 227–236 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  14. Harks, T.: Stackelberg strategies and collusion in network games with splittable flow. Theory Comput. Syst. 48, 781–802 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harks, T., Klimm, M., Peis, B.: Resource competition on integral polymatroids. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 189–202. Springer, Cham (2014). doi:10.1007/978-3-319-13129-0_14

    Google Scholar 

  16. Harks, T., Klimm, M., Peis, B.: Sensitivity analysis for convex separable optimization over integral polymatroids (2016). https://arxiv.org/pdf/1611.05372.pdf

  17. Harks, T., Timmermans, V.: Equilibrium computation in atomic splittable singleton congestion games (2016). https://arxiv.org/pdf/1612.00190.pdf

  18. Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huang, C.-C.: Collusion in atomic splittable routing games. Theory Comput. Syst. 52(4), 763–801 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Korilis, Y., Lazar, A., Orda, A.: Capacity allocation under noncooperative routing. IEEE Trans. Aut. Contr. 42(3), 309–325 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Korilis, Y.A., Lazar, A.A., Orda, A.: Architecting noncooperative networks. IEEE J. Sel. Areas Commun. 13(7), 1241–1251 (1995)

    Article  Google Scholar 

  22. Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings 4th ACM Conference on Electronic Commerce (EC-2003), San Diego, California, USA, June 9–12, pp. 36–41 (2003)

    Google Scholar 

  23. Marcotte, P.: Algorithms for the network oligopoly problem. J. Oper. Res. Soc. 38(11), 1051–1065 (1987)

    Article  MATH  Google Scholar 

  24. Meunier, F., Pradeau, T.: A lemke-like algorithm for the multiclass network equilibrium problem. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 363–376. Springer, Heidelberg (2013). doi:10.1007/978-3-642-45046-4_30

    Chapter  Google Scholar 

  25. Orda, A., Rom, R., Shimkin, N.: Competitive routing in multi-user communication networks. IEEE/ACM Trans. Network. 1, 510–521 (1993)

    Article  Google Scholar 

  26. A. D. Pia, M. Ferris, and C. Michini. Totally unimodular congestion games. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2017)

    Google Scholar 

  27. Richman, O., Shimkin, N.: Topological uniqueness of the Nash equilibrium for selfish routing with atomic users. Math. Oper. Res. 32(1), 215–232 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theor. 2(1), 65–67 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  29. Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 40th Annual ACM Syposium Theory Computing, pp. 355–364 (2008)

    Google Scholar 

  30. Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.: On the existence of pure strategy Nash equilibria in integer-splittable weighted congestion games. In: Persiano, G. (ed.) SAGT, pp. 236–253 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veerle Timmermans .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Harks, T., Timmermans, V. (2017). Equilibrium Computation in Atomic Splittable Singleton Congestion Games. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics