Equilibrium Computation in Atomic Splittable Singleton Congestion Games

  • Tobias Harks
  • Veerle TimmermansEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10328)


We devise the first polynomial time algorithm computing a pure Nash equilibrium for atomic splittable congestion games with singleton strategies and player-specific affine cost functions. Our algorithm is purely combinatorial and computes the exact equilibrium assuming rational input. The idea is to compute a pure Nash equilibrium for an associated integrally-splittable singleton congestion game in which the players can only split their demands in integral multiples of a common packet size. While integral games have been considered in the literature before, no polynomial time algorithm computing an equilibrium was known. Also for this class, we devise the first polynomial time algorithm and use it as a building block for our main algorithm.


Polynomial Time Algorithm Packet Size Full Version Strategy Profile Strategy Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure on congestion games. J. ACM 55(6), 1–22 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Ackermann, H., Röglin, H., Vöcking, B.: Pure Nash equilibria in player-specific and weighted congestion games. Theoret. Comput. Sci. 410(17), 1552–1563 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bhaskar, U., Fleischer, L., Hoy, D., Huang, C.-C.: Equilibria of atomic flow games are not unique. Math. Oper. Res. 40(3), 634–654 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Efficient computation of approximate pure Nash equilibria in congestion games. In: FOCS, Palm Springs, CA, USA, pp. 532–541 (2011)Google Scholar
  5. 5.
    Caragiannis, I., Fanelli, A., Gravin, N., Skopalik, A.: Approximate pure Nash equilibria in weighted congestion games: existence, efficient computation, and structure. ACM Trans. Econ. Comput. 3(1), 2 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3), 14:1–14:55 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chien, S., Sinclair, A.: Convergence to approximate Nash equilibria in congestion games. Games Econom. Behav. 71(2), 315–327 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cominetti, R., Correa, J.R., Stier-Moses, N.E.: The impact of oligopolistic competition in networks. Oper. Res. 57(6), 1421–1437 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Deligkas, A., Fearnley, J., Spirakis, P.: Lipschitz continuity and approximate equilibria. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 15–26. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53354-3_2 CrossRefGoogle Scholar
  11. 11.
    Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Babai, L. (ed.) STOC, pp. 604–612 (2004)Google Scholar
  12. 12.
    Gairing, M., Monien, B., Tiemann, K.: Routing (un-)splittable flow in games with player-specific linear latency functions. ACM Trans. Algorithms 7(3), 1–31 (2011)CrossRefzbMATHGoogle Scholar
  13. 13.
    Groenevelt, H.: Two algorithms for maximizing a separable concave function over a polymatroid feasible region. Eur. J. Oper. Res. 54(2), 227–236 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Harks, T.: Stackelberg strategies and collusion in network games with splittable flow. Theory Comput. Syst. 48, 781–802 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Harks, T., Klimm, M., Peis, B.: Resource competition on integral polymatroids. In: Liu, T.-Y., Qi, Q., Ye, Y. (eds.) WINE 2014. LNCS, vol. 8877, pp. 189–202. Springer, Cham (2014). doi: 10.1007/978-3-319-13129-0_14 Google Scholar
  16. 16.
    Harks, T., Klimm, M., Peis, B.: Sensitivity analysis for convex separable optimization over integral polymatroids (2016).
  17. 17.
    Harks, T., Timmermans, V.: Equilibrium computation in atomic splittable singleton congestion games (2016).
  18. 18.
    Haurie, A., Marcotte, P.: On the relationship between Nash-Cournot and Wardrop equilibria. Networks 15, 295–308 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Huang, C.-C.: Collusion in atomic splittable routing games. Theory Comput. Syst. 52(4), 763–801 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Korilis, Y., Lazar, A., Orda, A.: Capacity allocation under noncooperative routing. IEEE Trans. Aut. Contr. 42(3), 309–325 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Korilis, Y.A., Lazar, A.A., Orda, A.: Architecting noncooperative networks. IEEE J. Sel. Areas Commun. 13(7), 1241–1251 (1995)CrossRefGoogle Scholar
  22. 22.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings 4th ACM Conference on Electronic Commerce (EC-2003), San Diego, California, USA, June 9–12, pp. 36–41 (2003)Google Scholar
  23. 23.
    Marcotte, P.: Algorithms for the network oligopoly problem. J. Oper. Res. Soc. 38(11), 1051–1065 (1987)CrossRefzbMATHGoogle Scholar
  24. 24.
    Meunier, F., Pradeau, T.: A lemke-like algorithm for the multiclass network equilibrium problem. In: Chen, Y., Immorlica, N. (eds.) WINE 2013. LNCS, vol. 8289, pp. 363–376. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45046-4_30 CrossRefGoogle Scholar
  25. 25.
    Orda, A., Rom, R., Shimkin, N.: Competitive routing in multi-user communication networks. IEEE/ACM Trans. Network. 1, 510–521 (1993)CrossRefGoogle Scholar
  26. 26.
    A. D. Pia, M. Ferris, and C. Michini. Totally unimodular congestion games. In: Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (to appear, 2017)Google Scholar
  27. 27.
    Richman, O., Shimkin, N.: Topological uniqueness of the Nash equilibrium for selfish routing with atomic users. Math. Oper. Res. 32(1), 215–232 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rosenthal, R.: A class of games possessing pure-strategy Nash equilibria. Internat. J. Game Theor. 2(1), 65–67 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Skopalik, A., Vöcking, B.: Inapproximability of pure Nash equilibria. In: Proceedings of the 40th Annual ACM Syposium Theory Computing, pp. 355–364 (2008)Google Scholar
  30. 30.
    Tran-Thanh, L., Polukarov, M., Chapman, A., Rogers, A., Jennings, N.: On the existence of pure strategy Nash equilibria in integer-splittable weighted congestion games. In: Persiano, G. (ed.) SAGT, pp. 236–253 (2011)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Institute of MathematicsUniversity of AugsburgAugsburgGermany
  2. 2.Department of Quantitative EconomicsMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations