Skip to main content

High Degree Sum of Squares Proofs, Bienstock-Zuckerberg Hierarchy and CG Cuts

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

Abstract

Chvátal-Gomory (CG) cuts captures useful and efficient linear programs that the bounded degree Lasserre/Sum-of-Squares (\({\textsc {sos}}\)) hierarchy fails to capture. We present an augmented version of the \({\textsc {sos}}\) hierarchy for 0/1 integer problems that implies the Bienstock-Zuckerberg hierarchy by using high degree polynomials (when expressed in the standard monomial basis). It follows that for a class of polytopes (e.g. set covering and packing problems), the \({\textsc {sos}}\) approach can optimize, up to an arbitrarily small error, over the polytope resulting from any constant rounds of CG cuts in polynomial time.

Supported by the Swiss National Science Foundation project 200020-169022 “Lift and Project Methods for Machine Scheduling Through Theory and Experiments”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some research communities such linear functional is called pseudo-expectation.

  2. 2.

    This is the standard bounded degree \({\textsc {sos}}\) proof system.

References

  1. Au, Y.H., Tunçel, L.: Elementary polytopes with high lift-and-project ranks for strong positive semidefinite operators. arXiv preprint arXiv:1608.07647 (2016)

  2. Bansal, N.: Hierarchies reading group. http://www.win.tue.nl/nikhil/hierarchies/

  3. Bienstock, D., Zuckerberg, M.: Subset algebra lift operators for 0-1 integer programming. SIAM J. Optim. 15(1), 63–95 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bienstock, D., Zuckerberg, M.: Approximate fixed-rank closures of covering problems. Math. Program. 105(1), 9–27 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Blekherman, G., Parrilo, P.A., Thomas, R.R.: Semidefinite Optimization and Convex Algebraic Geometry, vol. 13. Siam, Philadelphia (2013)

    MATH  Google Scholar 

  6. Conforti, M., Cornuejols, G., Zambelli, G.: Integer Programming. Springer Publishing Company, Incorporated (2014)

    Book  MATH  Google Scholar 

  7. Fawzi, H., Saunderson, J., Parrilo, P.A.: Equivariant semidefinite lifts and sum-of-squares hierarchies. SIAM J. Optim. 25(4), 2212–2243 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1), 95–128 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Karlin, A.R., Mathieu, C., Nguyen, C.T.: Integrality gaps of linear and semi-definite programming relaxations for knapsack. In: Günlük, O., Woeginger, G.J. (eds.) IPCO 2011. LNCS, vol. 6655, pp. 301–314. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20807-2_24

    Chapter  Google Scholar 

  10. Kurpisz, A., Leppänen, S., Mastrolilli, M.: Sum-of-squares hierarchy lower bounds for symmetric formulations. In: Louveaux, Q., Skutella, M. (eds.) IPCO 2016. LNCS, vol. 9682, pp. 362–374. Springer, Cham (2016). doi:10.1007/978-3-319-33461-5_30

    Google Scholar 

  11. Kurpisz, A., Leppänen, S., Mastrolilli, M.: On the hardest problem formulations for the 0/1 lasserre hierarchy. Math. Oper. Res. 42(1), 135–143 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kurpisz, A., Leppänen, S., Mastrolilli, M.: An unbounded sum-of-squares hierarchy integrality gap for a polynomially solvable problem. Mathematical Programming (2017, to appear)

    Google Scholar 

  13. Lasserre, J.B.: Global optimization with polynomials and the problem of moments. SIAM J. Optim. 11(3), 796–817 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  14. Letchford, A.N., Pokutta, S., Schulz, A.S.: On the membership problem for the {0, 1/2}-closure. Oper. Res. Lett. 39(5), 301–304 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Pudlák, P.: Lower bounds for resolution and cutting plane proofs and monotone computations. J. Symb. Log. 62(3), 981–998 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  17. Raymond, A., Saunderson, J., Singh, M., Thomas, R.R.: Symmetric sums of squares over \( k \)-subset hypercubes. arXiv preprint arXiv:1606.05639 (2016)

  18. Shor, N.: Class of global minimum bounds of polynomial functions. Cybern. Syst. Anal. 23(6), 731–734 (1987)

    Article  MATH  Google Scholar 

  19. Zuckerberg, M.: A set theoretic approach to lifting procedures for 0, 1 integer programming. Ph.D. thesis, Columbia University (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monaldo Mastrolilli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mastrolilli, M. (2017). High Degree Sum of Squares Proofs, Bienstock-Zuckerberg Hierarchy and CG Cuts. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics