Skip to main content

Deterministic Discrepancy Minimization via the Multiplicative Weight Update Method

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10328))

Abstract

A well-known theorem of Spencer shows that any set system with n sets over n elements admits a coloring of discrepancy \(O(\sqrt{n})\). While the original proof was non-constructive, recent progress brought polynomial time algorithms by Bansal, Lovett and Meka, and Rothvoss. All those algorithms are randomized, even though Bansal’s algorithm admitted a complicated derandomization.

We propose an elegant deterministic polynomial time algorithm that is inspired by Lovett-Meka as well as the Multiplicative Weight Update method. The algorithm iteratively updates a fractional coloring while controlling the exponential weights that are assigned to the set constraints.

A conjecture by Meka suggests that Spencer’s bound can be generalized to symmetric matrices. We prove that \(n \times n\) matrices that are block diagonal with block size q admit a coloring of discrepancy \(O(\sqrt{n} \cdot \sqrt{\log (q)})\). Bansal, Dadush and Garg recently gave a randomized algorithm to find a vector x with entries in \(\lbrace {-1,1\rbrace }\) with \(\Vert Ax\Vert _{\infty } \le O(\sqrt{\log n})\) in polynomial time, where A is any matrix whose columns have length at most 1. We show that our method can be used to deterministically obtain such a vector.

T. Rothvoss—Supported by NSF grant 1420180 with title “Limitations of convex relaxations in combinatorial optimization”, an Alfred P. Sloan Research Fellowship and a David & Lucile Packard Foundation Fellowship.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    We should mention for the sake of completeness that our update choice is not a convex combination of the experts weighted by their exponential weights.

  2. 2.

    See the blog post https://windowsontheory.org/2014/02/07/discrepancy-and-be ating-the-union-bound/.

  3. 3.

    See https://arxiv.org/abs/1611.08752.

References

  1. Arora, S., Hazan, E., Kale, S.: The multiplicative weights update method: a meta-algorithm and applications. Theor. Comput. 8(6), 121–164 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alon, N., Spencer, J.H.: The Probabilistic Method. Wiley-Interscience Series in Discrete Mathematics and Optimization, 3rd edn. John Wiley & Sons Inc., Hoboken (2008). With an appendix on the life and work of Paul Erdős

    Book  MATH  Google Scholar 

  3. Banaszczyk, W.: Balancing vectors and Gaussian measures of \(n\)-dimensional convex bodies. Random Struct. Algorithms 12(4), 351–360 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bansal, N.: Constructive algorithms for discrepancy minimization. In: FOCS, pp. 3–10 (2010)

    Google Scholar 

  5. Bansal, N., Dadush, D., Garg, S: An algorithm for komlós conjecture matching banaszczyk’s bound. CoRR, abs/1605.02882 (2016)

    Google Scholar 

  6. Beck, J.: Roth’s estimate of the discrepancy of integer sequences is nearly sharp. Combinatorica 1(4), 319–325 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  7. Beck, J., Fiala, T.: “Integer-making" theorems. Discrete Appl. Math. 3(1), 1–8 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  8. Rajendra, B.: Matrix Analysis. Graduate Texts in Mathematics. Springer, New York (1997)

    MATH  Google Scholar 

  9. Bohus, G.: On the discrepancy of 3 permutations. Random Struct. Algorithms 1(2), 215–220 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bansal, N., Spencer, J.: Deterministic discrepancy minimization. Algorithmica 67(4), 451–471 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chazelle, B.: The Discrepancy Method - Randomness and Complexity. University Press, Cambridge (2001)

    MATH  Google Scholar 

  12. Giannopoulos, A.: On some vector balancing problems. Stud. Math. 122(3), 225–234 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Gluskin, E.D.: Extremal properties of orthogonal parallelepipeds and their applications to the geometry of banach spaces. Math. USSR Sb. 64(1), 85 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lovett, S., Meka, R.: Constructive discrepancy minimization by walking on the edges. In: FOCS, pp. 61–67 (2012)

    Google Scholar 

  15. Matoušek, J.: Geometric Discrepancy. Algorithms and Combinatorics. Springer, Berlin (1999). An illustrated guide

    Book  MATH  Google Scholar 

  16. Marcus, A., Spielman, D.A., Srivastava, N.: Interlacing families, I.I.: mixed characteristic polynomials and the Kadison-singer problem. arXiv e-prints, June 2013

    Google Scholar 

  17. Nikolov, A.: The komlos conjecture holds for vector colorings. arXiv e-prints, Jan 2013

    Google Scholar 

  18. Newman, A., Neiman, O., Nikolov, A.: Beck’s three permutations conjecture: a counterexample and some consequences. In: FOCS, pp. 253–262 (2012)

    Google Scholar 

  19. Spencer, J.: Balancing games. J. Comb. Theor. Ser. B 23(1), 68–74 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Spencer, J.: Six standard deviations suffice. Trans. Am. Math. Soc. 289(2), 679–706 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Srinivasan, A.: Improving the discrepancy bound for sparse matrices: Better approximations for sparse lattice approximation problems. In: SODA 1997, ACM SIGACT, SIAM, Philadelphia, PA, pp. 692–701 (1997)

    Google Scholar 

  22. Spencer, J.H., Srinivasan, A., Tetali, P.: The discrepancy of permutation families. Unpublished manuscript

    Google Scholar 

  23. Zouzias, A.: A Matrix hyperbolic cosine algorithm and applications. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012. LNCS, vol. 7391, pp. 846–858. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31594-7_71

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harishchandra Ramadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Levy, A., Ramadas, H., Rothvoss, T. (2017). Deterministic Discrepancy Minimization via the Multiplicative Weight Update Method. In: Eisenbrand, F., Koenemann, J. (eds) Integer Programming and Combinatorial Optimization. IPCO 2017. Lecture Notes in Computer Science(), vol 10328. Springer, Cham. https://doi.org/10.1007/978-3-319-59250-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59250-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-59249-7

  • Online ISBN: 978-3-319-59250-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics