Advertisement

Minimum Birkhoff-von Neumann Decomposition

  • Janardhan Kulkarni
  • Euiwoong Lee
  • Mohit SinghEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10328)

Abstract

Motivated by the applications in routing in data centers, we study the problem of expressing an \(n \times n\) doubly stochastic matrix as a linear combination using the smallest number of (sub)permutation matrices. The Birkhoff-von Neumann decomposition theorem proves that there exists such a decomposition, but does not give a representation with the smallest number of permutation matrices. In particular, we consider the case when the optimal decomposition uses a constant number of matrices. We show that the problem is not fixed parameter tractable, and design a logarithmic approximation to the problem.

References

  1. 1.
    Barman, S.: Approximating nash equilibria and dense bipartite subgraphs via an approximate version of caratheodory’s theorem. In: Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, pp. 361–369. ACM (2015)Google Scholar
  2. 2.
    Bojja, S., Mohammad Alizadeh, V., Viswanath, P.: Costly circuits, submodular schedules and approximate carathéodory theorems. In: Proceedings of the ACM SIGMETRICS International Conference on Measurement and Modeling of Computer Science, pp. 75–88. ACM (2016)Google Scholar
  3. 3.
    Brualdi, R.A.: Notes on the birkhoff algorithm for doubly stochastic matrices. Can. Math. Bull. 25(2), 191–199 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brualdi, R.A., Gibson, P.M.: Convex polyhedra of doubly stochastic matrices. I. Applications of the permanent function. J. Comb. Theor. Ser. A 22(2), 194–230 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chang, C.-S., Chen, W.-J., Huang, H.-Y.: On service guarantees for input-buffered crossbar switches: a capacity decomposition approach by Birkhoff and von Neumann. In: Seventh International Workshop on Quality of Service, IWQoS 1999, pp. 79–86. IEEE (1999)Google Scholar
  6. 6.
    Chen, K., Singla, A., Singh, A., Ramachandran, K., Lei, X., Zhang, Y., Wen, X., Chen, Y.: Osa: an optical switching architecture for data center networks with unprecedented flexibility. IEEE/ACM Trans. Netw. 22(2), 498–511 (2014)CrossRefGoogle Scholar
  7. 7.
    Dufossé, F., Uçar, B.: Notes on Birkhoff-von Neumann decomposition of doubly stochastic matrices. Linear Algebra Appl. 497, 108–115 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Erdos, P., Lovász, L.: Problems and results on 3-chromatic hypergraphs and some related questions. Infinite Finite Sets 10(2), 609–627 (1975)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Farrington, N., Porter, G., Radhakrishnan, S., Hajabdolali Bazzaz, H., Subramanya, V., Fainman, Y., Papen, G., Vahdat, A.: Helios: a hybrid electrical/optical switch architecture for modular data centers. ACM SIGCOMM Comput. Commun. Rev. 40(4), 339–350 (2010)CrossRefGoogle Scholar
  10. 10.
    Ghobadi, M., Mahajan, R., Phanishayee, A., Devanur, N., Kulkarni, J., Ranade, G., Blanche, P.-A., Rastegarfar, H., Glick, M., Kilper, D.: Projector: agile reconfigurable data center interconnect. In: Proceedings of the Conference on ACM SIGCOMM Conference, pp. 216–229. ACM (2016)Google Scholar
  11. 11.
    Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–720 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Liu, H., Mukerjee, M.K., Li, C., Feltman, N., Papen, G., Savage, S., Seshan, S., Voelker, G.M., Andersen, D.G., Kaminsky, M., et al.: Scheduling techniques for hybrid circuit/packet networks. In: ACM CoNEXT (2015)Google Scholar
  13. 13.
    Lovász, L., Plummer, M.D.: Matching Theory, vol. 367. American Mathematical Soc., Providence (2009)zbMATHGoogle Scholar
  14. 14.
    Marcus, M., Ree, R.: Diagonals of doubly stochastic matrices. Q. J. Math. 10(1), 296–302 (1959)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Matoušek, J.: Lectures on Discrete Geometry, vol. 108. Springer, New York (2002)CrossRefzbMATHGoogle Scholar
  16. 16.
    Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM (JACM) 57(2), 11 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    Motwani, R., Raghavan, P.: Randomized Algorithms. Chapman & Hall/CRC, Boca Raton (2010)zbMATHGoogle Scholar
  18. 18.
    Porter, G., Strong, R., Farrington, N., Forencich, A., Chen-Sun, P., Rosing, T., Fainman, Y., Papen, G., Vahdat, A.: Integrating microsecond circuit switching into the data center, vol. 43. ACM (2013)Google Scholar
  19. 19.
    Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Diskret. Analiz 3(7), 25–30 (1964)MathSciNetGoogle Scholar
  20. 20.
    Wang, G., Andersen, D.G., Kaminsky, M., Konstantina Papagiannaki, T.S., Ng, M.K., Ryan, M.: c-through: part-time optics in data centers. In: ACM SIGCOMM Computer Communication Review, vol. 40, pp. 327–338. ACM (2010)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Microsoft ResearchRedmondUSA
  2. 2.Carnegie Mellon UniversityPittsburghUSA
  3. 3.Georgia Institute of TechnologyAtlantaUSA

Personalised recommendations