A 4/5 - Approximation Algorithm for the Maximum Traveling Salesman Problem

  • Szymon Dudycz
  • Jan Marcinkowski
  • Katarzyna PaluchEmail author
  • Bartosz Rybicki
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10328)


In the maximum traveling salesman problem (Max TSP) we are given a complete undirected graph with nonnegative weights on the edges and we wish to compute a traveling salesman tour of maximum weight. We present a fast combinatorial \(\frac{4}{5}\) – approximation algorithm for Max TSP. The previous best approximation for this problem was \(\frac{7}{9}\). The new algorithm is based on a technique of eliminating difficult subgraphs via gadgets with half-edges, a new method of edge coloring and a technique of exchanging edges.


Travel Salesman Problem Outgoing Edge Color Class External Edge Double Edge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Arkin, E.M., Chiang, Y., Mitchell, J.S.B., Skiena, S., Yang, T.: On the maximum scatter TSP (extended abstract). In: Proceedings of the Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 211–220 (1997)Google Scholar
  2. 2.
    Barvinok, A.I., Fekete, S.P., Johnson, D.S., Tamir, A., Woeginger, G.J., Woodroofe, R.: The geometric maximum traveling salesman problem. J. ACM 50(5), 641–664 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barvinok, A., Johnson, D.S., Woeginger, G.J., Woodroofe, R.: The maximum traveling salesman problem under polyhedral norms. In: Bixby, R.E., Boyd, E.A., Ríos-Mercado, R.Z. (eds.) IPCO 1998. LNCS, vol. 1412, pp. 195–201. Springer, Heidelberg (1998). doi: 10.1007/3-540-69346-7_15 CrossRefGoogle Scholar
  4. 4.
    Bhatia, R.: Private communicationGoogle Scholar
  5. 5.
    Chalasani, P., Motwani, R.: Approximating capacitated routing and delivery problems. SIAM J. Comput. 28(6), 2133–2149 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chen, Z.Z., Okamoto, Y., Wang, L.: Improved deterministic approximation algorithms for max TSP. Inf. Process. Lett. 95(2), 333–342 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, Z.-Z., Wang, L.: An improved approximation algorithm for the bandpass-2 problem. In: Lin, G. (ed.) COCOA 2012. LNCS, vol. 7402, pp. 188–199. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31770-5_17 CrossRefGoogle Scholar
  8. 8.
    Chiang, Y.J.: New approximation results for the maximum scatter tsp. Algorithmica 41(4), 309–341 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dudycz, S., Marcinkowski, J., Paluch, K.E., Rybicki, B.: A 4/5 - approximation algorithm for the maximum traveling salesman problem. CoRR abs/1512.09236 (2015).
  10. 10.
    Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for finding a maximum weight hamiltonian circuit. Oper. Res. 27(4), 799–809 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Hassin, R., Levin, A., Rubinstein, S.: Approximation algorithms for maximum latency and partial cycle cover. Discrete Optim. 6(2), 197–205 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hassin, R., Rubinstein, S.: An approximation algorithm for the maximum traveling salesman problem. Inf. Process. Lett. 67(3), 125–130 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hassin, R., Rubinstein, S.: Better approximations for max TSP. Inf. Process. Lett. 75(4), 181–186 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Hassin, R., Rubinstein, S.: An approximation algorithm for maximum triangle packing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 403–413. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-30140-0_37 CrossRefGoogle Scholar
  15. 15.
    Kaplan, H., Lewenstein, M., Shafrir, N., Sviridenko, M.: Approximation algorithms for asymmetric tsp by decomposing directed regular multigraphs. In: 44th Symposium on Foundations of Computer Science (FOCS 2003) (2003)Google Scholar
  16. 16.
    Kosaraju, S.R., Park, J.K., Stein, C.: Long tours and short superstrings. In: 35th Annual IEEE Symposium on Foundations of Computer Science (FOCS) (1994)Google Scholar
  17. 17.
    Kowalik, Ł., Mucha, M.: 35/44-approximation for asymmetric maximum TSP with triangle inequality. In: Dehne, F., Sack, J.-R., Zeh, N. (eds.) WADS 2007. LNCS, vol. 4619, pp. 589–600. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-73951-7_51 CrossRefGoogle Scholar
  18. 18.
    Kowalik, Ł., Mucha, M.: Deterministic 7/8-approximation for the metric maximum TSP. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX/RANDOM -2008. LNCS, vol. 5171, pp. 132–145. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85363-3_11 Google Scholar
  19. 19.
    Monnot, J.: Approximation algorithms for the maximum hamiltonian path problem with specified endpoint(s). Eur. J. Oper. Res. 161(3), 721–735 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Paluch, K.E.: Better approximation algorithms for maximum asymmetric traveling salesman and shortest superstring. CoRR (2014)Google Scholar
  21. 21.
    Paluch, K.E., Elbassioni, K.M., van Zuylen, A.: Simpler approximation of the maximum asymmetric traveling salesman problem. In: 29th International Symposium on Theoretical Aspects of Computer Science, STACS (2012)Google Scholar
  22. 22.
    Paluch, K., Mucha, M., Ma̧dry, A.: A 7/9 - approximation algorithm for the maximum traveling salesman problem. In: Dinur, I., Jansen, K., Naor, J., Rolim, J. (eds.) APPROX/RANDOM -2009. LNCS, vol. 5687, pp. 298–311. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03685-9_23 CrossRefGoogle Scholar
  23. 23.
    Papadimitriou, C.H., Yannakakis, M.: The traveling salesman problem with distances one and two. Math. Oper. Res. 18(1), 1–11 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Schrijver, A.: Nonbipartite matching and covering. In: Combinatorial Optimization, vol. A, pp. 520–561. Springer (2003)Google Scholar
  25. 25.
    Serdyukov, A.I.: An algorithm with an estimate for the traveling salesman problem of maximum. Upravlyaemye Sistemy 25, 80–86 (1984) (in Russian)Google Scholar
  26. 26.
    Sichen, Z., Zhao, L., Liang, Y., Zamani, M., Patro, R., Chowdhury, R., Arkin, E.M., Mitchell, J.S.B., Skiena, S.: Optimizing read reversals for sequence compression. In: Pop, M., Touzet, H. (eds.) WABI 2015. LNCS, vol. 9289, pp. 189–202. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48221-6_14 CrossRefGoogle Scholar
  27. 27.
    Tong, W., Goebel, R., Liu, T., Lin, G.: Approximation algorithms for the maximum multiple RNA interaction problem. In: Widmayer, P., Xu, Y., Zhu, B. (eds.) COCOA 2013. LNCS, vol. 8287, pp. 49–59. Springer, Cham (2013). doi: 10.1007/978-3-319-03780-6_5 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Szymon Dudycz
    • 1
  • Jan Marcinkowski
    • 1
  • Katarzyna Paluch
    • 1
    Email author
  • Bartosz Rybicki
    • 1
  1. 1.Institute of Computer ScienceUniversity of WrocławWrocławPoland

Personalised recommendations