Advertisement

The Two-Point Fano and Ideal Binary Clutters

  • Ahmad AbdiEmail author
  • Bertrand Guenin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10328)

Abstract

Let \({\mathbb {F}}\) be a binary clutter. We prove that if \({\mathbb {F}}\) is non-ideal, then either \({\mathbb {F}}\) or its blocker \(b({\mathbb {F}})\) has one of \({\mathbb {L}}_7,{\mathbb {O}}_5,{\mathbb {L}}{\mathbb {C}}_7\) as a minor. \({\mathbb {L}}_7\) is the non-ideal clutter of the lines of the Fano plane, \({\mathbb {O}}_5\) is the non-ideal clutter of odd circuits of the complete graph \(K_5\), and the two-point Fano \({\mathbb {L}}{\mathbb {C}}_7\) is the ideal clutter whose sets are the lines, and their complements, of the Fano plane that contain exactly one of two fixed points. In fact, we prove the following stronger statement: if \({\mathbb {F}}\) is a minimally non-ideal binary clutter different from \({\mathbb {L}}_7,{\mathbb {O}}_5,b({\mathbb {O}}_5)\), then through every element, either \({\mathbb {F}}\) or \(b({\mathbb {F}})\) has a two-point Fano minor.

References

  1. 1.
    Abdi, A., Guenin, B.: The minimally non-ideal binary clutters with a triangle (Submitted)Google Scholar
  2. 2.
    Bridges, W.G., Ryser, H.J.: Combinatorial designs and related systems. J. Algebra 13, 432–446 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cornuéjols, G.: Combinatorial Optimization, Packing and Covering. SIAM, Philadelphia (2001)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cornuéjols, G., Guenin, B.: Ideal binary clutters, connectivity, and a conjecture of Seymour. SIAM J. Discrete Math. 15(3), 329–352 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Combin. Theory Ser. B 8, 299–306 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112–168 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Guenin, B.: Integral polyhedra related to even-cycle and even-cut matroids. Math. Oper. Res. 27(4), 693–710 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Lehman, A.: A solution of the Shannon switching game. Soc. Ind. Appl. Math. 12(4), 687–725 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Lehman, A.: On the width-length inequality. Math. Program. 17(1), 403–417 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lehman, A.: The width-length inequality and degenerate projective planes. In: DIMACS, vol. 1, pp. 101–105 (1990)Google Scholar
  12. 12.
    Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)zbMATHGoogle Scholar
  13. 13.
    Novick, B., Sebő, A.: On combinatorial properties of binary spaces. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 212–227. Springer, Heidelberg (1995). doi: 10.1007/3-540-59408-6_53 CrossRefGoogle Scholar
  14. 14.
    Oxley, J.: Matroid Theory, 2nd edn. Oxford University Press, New York (2011)CrossRefzbMATHGoogle Scholar
  15. 15.
    Seymour, P.D.: On Lehman’s width-length characterization. In: DIMACS, vol. 1, pp. 107–117 (1990)Google Scholar
  16. 16.
    Seymour, P.D.: The forbidden minors of binary matrices. J. Lond. Math. Soc. 2(12), 356–360 (1976)CrossRefzbMATHGoogle Scholar
  17. 17.
    Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189–222 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Combinatorics and OptimizationUniversity of WaterlooWaterlooCanada

Personalised recommendations