The Two-Point Fano and Ideal Binary Clutters

• Bertrand Guenin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10328)

Abstract

Let $${\mathbb {F}}$$ be a binary clutter. We prove that if $${\mathbb {F}}$$ is non-ideal, then either $${\mathbb {F}}$$ or its blocker $$b({\mathbb {F}})$$ has one of $${\mathbb {L}}_7,{\mathbb {O}}_5,{\mathbb {L}}{\mathbb {C}}_7$$ as a minor. $${\mathbb {L}}_7$$ is the non-ideal clutter of the lines of the Fano plane, $${\mathbb {O}}_5$$ is the non-ideal clutter of odd circuits of the complete graph $$K_5$$, and the two-point Fano $${\mathbb {L}}{\mathbb {C}}_7$$ is the ideal clutter whose sets are the lines, and their complements, of the Fano plane that contain exactly one of two fixed points. In fact, we prove the following stronger statement: if $${\mathbb {F}}$$ is a minimally non-ideal binary clutter different from $${\mathbb {L}}_7,{\mathbb {O}}_5,b({\mathbb {O}}_5)$$, then through every element, either $${\mathbb {F}}$$ or $$b({\mathbb {F}})$$ has a two-point Fano minor.

References

1. 1.
Abdi, A., Guenin, B.: The minimally non-ideal binary clutters with a triangle (Submitted)Google Scholar
2. 2.
Bridges, W.G., Ryser, H.J.: Combinatorial designs and related systems. J. Algebra 13, 432–446 (1969)
3. 3.
Cornuéjols, G.: Combinatorial Optimization, Packing and Covering. SIAM, Philadelphia (2001)
4. 4.
Cornuéjols, G., Guenin, B.: Ideal binary clutters, connectivity, and a conjecture of Seymour. SIAM J. Discrete Math. 15(3), 329–352 (2002)
5. 5.
Edmonds, J., Fulkerson, D.R.: Bottleneck extrema. J. Combin. Theory Ser. B 8, 299–306 (1970)
6. 6.
Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8, 399–404 (1956)
7. 7.
Guenin, B.: A characterization of weakly bipartite graphs. J. Combin. Theory Ser. B 83, 112–168 (2001)
8. 8.
Guenin, B.: Integral polyhedra related to even-cycle and even-cut matroids. Math. Oper. Res. 27(4), 693–710 (2002)
9. 9.
Lehman, A.: A solution of the Shannon switching game. Soc. Ind. Appl. Math. 12(4), 687–725 (1964)
10. 10.
Lehman, A.: On the width-length inequality. Math. Program. 17(1), 403–417 (1979)
11. 11.
Lehman, A.: The width-length inequality and degenerate projective planes. In: DIMACS, vol. 1, pp. 101–105 (1990)Google Scholar
12. 12.
Menger, K.: Zur allgemeinen Kurventheorie. Fundamenta Mathematicae 10, 96–115 (1927)
13. 13.
Novick, B., Sebő, A.: On combinatorial properties of binary spaces. In: Balas, E., Clausen, J. (eds.) IPCO 1995. LNCS, vol. 920, pp. 212–227. Springer, Heidelberg (1995). doi:
14. 14.
Oxley, J.: Matroid Theory, 2nd edn. Oxford University Press, New York (2011)
15. 15.
Seymour, P.D.: On Lehman’s width-length characterization. In: DIMACS, vol. 1, pp. 107–117 (1990)Google Scholar
16. 16.
Seymour, P.D.: The forbidden minors of binary matrices. J. Lond. Math. Soc. 2(12), 356–360 (1976)
17. 17.
Seymour, P.D.: The matroids with the max-flow min-cut property. J. Combin. Theory Ser. B 23, 189–222 (1977)