Skip to main content

Epigenetic Regulation of Cancer Dormancy as a Plasticity Mechanism for Metastasis Initiation

  • Chapter
  • First Online:
Tumor Dormancy and Recurrence

Abstract

Metastasis is responsible for the vast majority of cancer-related deaths. However, our understanding of this complex process is still vastly limited, as is the ability to prevent metastasis. Paradoxically, while clinical trials are commonly performed in patients with advanced metastatic disease, disseminated residual disease is rarely targeted. This eliminates a critical window of opportunity to prevent metastasis. Disseminated tumor cells (DTCs) that seed metastases can remain undetected years to decades after treatment of the primary tumor. Late relapse may be due to the ability of DTCs to survive in a quiescent or dormant state and evade therapies. Quiescence, a reversible growth arrest coupled to robust survival, has emerged as a fitting biological definition for dormancy of single DTCs, but these mechanisms remain as one of the least understood “black boxes” in cancer biology. Because of the reversible nature of dormancy, it has been proposed that epigenetic changes are key in regulating the onset, maintenance and reactivation from this state. This is mediated by the post-translational modification of histones (PTMs), ATP-dependent chromatin remodeling, DNA methylation, and the incorporation of specialized histone variants into chromatin. Many morphogenetic and micro-environmental cues like retinoic acid, TGFβs, hematopoietic stem cell dormancy regulating cues and BMPs are known to cause chromatin modifications that dictate cell fate; these same cues were linked to the induction of cancer cell dormancy. Despite progress in understanding cancer cell dormancy, key questions remain open regarding its epigenetic nature. In this chapter we attempt to address key questions related to this topic using available data or hypothetical scenarios to build a model to further dissect how cancer cell dormancy can be manipulated epigenetically as a therapeutic strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sosa MS, Bragado P, Aguirre-Ghiso JA (2014) Mechanisms of disseminated cancer cell dormancy: an awakening field. Nat Rev Cancer 14:611–622. doi:10.1038/nrc3793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aguirre-Ghiso JA, Bragado P, Sosa MS (2013) Metastasis awakening: targeting dormant cancer. Nat Med 19:276–277. doi:10.1038/nm.3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Polzer B, Klein CA (2013) Metastasis awakening: the challenges of targeting minimal residual cancer. Nat Med 19:274–275. doi:10.1038/nm.3121

    Article  CAS  PubMed  Google Scholar 

  4. Klein CA (2010) Framework models of tumor dormancy from patient-derived observations. Curr Opin Genet Dev 21:42–49

    Article  PubMed  Google Scholar 

  5. Chéry L et al (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5(20):9939–9951

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ossowski L, Aguirre-Ghiso JA (2010) Dormancy of metastatic melanoma. Pigment Cell Melanoma Res 23:41–56. doi:10.1111/j.1755-148X.2009.00647.x

    Article  PubMed  Google Scholar 

  7. Ghajar CM (2015) Metastasis prevention by targeting the dormant niche. Nat Rev Cancer 15:238–247. doi:10.1038/nrc3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Giancotti FG (2013) Mechanisms governing metastatic dormancy and reactivation. Cell 155:750–764. doi:10.1016/j.cell.2013.10.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Crea F, Nur Saidy NR, Collins CC, Wang Y (2015) The epigenetic/noncoding origin of tumor dormancy. Trends Mol Med 21:206–211. doi:10.1016/j.molmed.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  10. Vardabasso C et al (2014) Histone variants: emerging players in cancer biology. Cell Mol Life Sci 71:379–404. doi:10.1007/s00018-013-1343-z

    Article  CAS  PubMed  Google Scholar 

  11. Wilkinson DS et al (2005) A direct intersection between p53 and transforming growth factor beta pathways targets chromatin modification and transcription repression of the alpha-fetoprotein gene. Mol Cell Biol 25:1200–1212. doi:10.1128/MCB.25.3.1200-1212.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Glenisson W, Castronovo V, Waltregny D (2007) Histone deacetylase 4 is required for TGFbeta1-induced myofibroblastic differentiation. Biochim Biophys Acta 1773:1572–1582. doi:10.1016/j.bbamcr.2007.05.016

    Article  CAS  PubMed  Google Scholar 

  13. Jepsen K et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression from neural stem cell to neuron. Nature 450:415–419. doi:10.1038/nature06270

    Article  CAS  PubMed  Google Scholar 

  14. Cras A et al (2007) Epigenetic patterns of the retinoic acid receptor beta2 promoter in retinoic acid-resistant thyroid cancer cells. Oncogene 26:4018–4024. doi:10.1038/sj.onc.1210178

    Article  CAS  PubMed  Google Scholar 

  15. Yang D, Okamura H, Nakashima Y, Haneji T (2013) Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem 288:33530–33541. doi:10.1074/jbc.M113.497040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yumoto K, Eber MR, Berry JE, Taichman RS, Shiozawa Y (2014) Molecular pathways: niches in metastatic dormancy. Clin Cancer Res. doi:10.1158/1078-0432.CCR-13-0897

    PubMed  PubMed Central  Google Scholar 

  17. Ruppender NS, Morrissey C, Lange PH, Vessella RL (2013) Dormancy in solid tumors: implications for prostate cancer. Cancer Metastasis Rev 32:501–509. doi:10.1007/s10555-013-9422-z

    Article  PubMed  Google Scholar 

  18. Ghajar CM et al (2013) The perivascular niche regulates breast tumour dormancy. Nat Cell Biol 15:807–817. doi:10.1038/ncb2767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bragado P et al (2013) TGF-beta2 dictates disseminated tumour cell fate in target organs through TGF-beta-RIII and p38alpha/beta signalling. Nat Cell Biol 15:1351–1361. doi:10.1038/ncb2861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Boyerinas B et al (2013) Adhesion to osteopontin in the bone marrow niche regulates lymphoblastic leukemia cell dormancy. Blood 121:4821–4831. doi:10.1182/blood-2012-12-475483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kobayashi A et al (2011) Bone morphogenetic protein 7 in dormancy and metastasis of prostate cancer stem-like cells in bone. J Exp Med 208:2641–2655. doi:10.1084/jem.20110840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gao H et al (2012) The BMP inhibitor coco reactivates breast cancer cells at lung metastatic sites. Cell 150:764–779. doi:10.1016/j.cell.2012.06.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sosa MS (2016) Dormancy programs as emerging antimetastasis therapeutic alternatives. Mol Cell Oncol 3:e1029062. doi:10.1080/23723556.2015.1029062

    Article  PubMed  Google Scholar 

  24. Sosa MS et al (2015) NR2F1 controls tumour cell dormancy via SOX9- and RARbeta-driven quiescence programmes. Nat Commun 6:6170. doi:10.1038/ncomms7170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Aguirre-Ghiso JA (2007) Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer 7:834–846. doi:10.1038/nrc2256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang J, Kim SK (2003) Global analysis of dauer gene expression in Caenorhabditis elegans. Development 130:1621–1634

    Article  CAS  PubMed  Google Scholar 

  27. Adam AP et al (2009) Computational identification of a p38SAPK-regulated transcription factor network required for tumor cell quiescence. Cancer Res 69:5664–5672. doi:10.1158/0008-5472.CAN-08-3820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamazaki S et al (2009) TGF-beta as a candidate bone marrow niche signal to induce hematopoietic stem cell hibernation. Blood 113:1250–1256

    Article  CAS  PubMed  Google Scholar 

  29. Frerichs KU et al (1998) Suppression of protein synthesis in brain during hibernation involves inhibition of protein initiation and elongation. Proc Natl Acad Sci U S A 95:14511–14516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Frerichs KU, Hallenbeck JM (1998) Hibernation in ground squirrels induces state and species-specific tolerance to hypoxia and aglycemia: an in vitro study in hippocampal slices. J Cereb Blood Flow Metab 18:168–175

    Article  CAS  PubMed  Google Scholar 

  31. Fukuyama M, Rougvie AE, Rothman JH (2006) C. elegans DAF-18/PTEN mediates nutrient-dependent arrest of cell cycle and growth in the germline. Curr Biol 16:773–779

    Article  CAS  PubMed  Google Scholar 

  32. Melendez A et al (2003) Autophagy genes are essential for dauer development and life-span extension in C. elegans. Science 301:1387–1391

    Article  CAS  PubMed  Google Scholar 

  33. Scognamiglio R et al (2016) Myc depletion induces a pluripotent dormant state mimicking diapause. Cell 164:668–680. doi:10.1016/j.cell.2015.12.033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gao F, Ayele BT (2014) Functional genomics of seed dormancy in wheat: advances and prospects. Front Plant Sci 5:458. doi:10.3389/fpls.2014.00458

    PubMed  PubMed Central  Google Scholar 

  35. Chinnusamy V, Gong Z, Zhu JK (2008) Abscisic acid-mediated epigenetic processes in plant development and stress responses. J Integr Plant Biol 50:1187–1195. doi:10.1111/j.1744-7909.2008.00727.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674. doi:10.1016/j.cell.2011.02.013

    Article  CAS  PubMed  Google Scholar 

  37. Scott MF, Otto SP (2014) Why wait? Three mechanisms selecting for environment-dependent developmental delays. J Evol Biol 27:2219–2232. doi:10.1111/jeb.12474

    Article  CAS  PubMed  Google Scholar 

  38. Seifan M, Seifan T, Schiffers K, Jeltsch F, Tielborger K (2013) Beyond the competition-colonization trade-off: linking multiple trait response to disturbance characteristics. Am Nat 181:151–160. doi:10.1086/668844

    Article  PubMed  Google Scholar 

  39. Flatt T, Amdam GV, Kirkwood TB, Omholt SW (2013) Life-history evolution and the polyphenic regulation of somatic maintenance and survival. Q Rev Biol 88:185–218

    Article  PubMed  Google Scholar 

  40. Stoecklein NH et al (2008) Direct genetic analysis of single disseminated cancer cells for prediction of outcome and therapy selection in esophageal cancer. Cancer Cell 13:441–453. doi:10.1016/j.ccr.2008.04.005

    Article  CAS  PubMed  Google Scholar 

  41. Klein CA (2008) The direct molecular analysis of metastatic precursor cells in breast cancer: a chance for a better understanding of metastasis and for personalised medicine. Eur J Cancer 44:2721–2725

    Article  CAS  PubMed  Google Scholar 

  42. Husemann Y et al (2008) Systemic spread is an early step in breast cancer. Cancer Cell 13:58–68. doi:10.1016/j.ccr.2007.12.003

    Article  PubMed  Google Scholar 

  43. Schardt JA et al (2005) Genomic analysis of single cytokeratin-positive cells from bone marrow reveals early mutational events in breast cancer. Cancer Cell 8:227–239. doi:10.1016/j.ccr.2005.08.003

    Article  CAS  PubMed  Google Scholar 

  44. Mantovani A, Giavazzi R, Alessandri G, Spreafico F, Garattini S (1981) Characterization of tumor lines derived from spontaneous metastases of a transplanted murine sarcoma. Eur J Cancer 17:71–76

    Article  CAS  PubMed  Google Scholar 

  45. Giavazzi R, Alessandri G, Spreafico F, Garattini S, Mantovani A (1980) Metastasizing capacity of tumour cells from spontaneous metastases of transplanted murine tumours. Br J Cancer 42:462–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Milas L, Peters LJ, Ito H (1983) Spontaneous metastasis: random or selective? Clin Exp Metastasis 1:309–315

    Article  CAS  PubMed  Google Scholar 

  47. Wyckoff J et al (2004) A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors. Cancer Res 64:7022–7029

    Article  CAS  PubMed  Google Scholar 

  48. van’t Veer LJ et al (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  49. Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54. doi:10.1038/ng1060

    Article  CAS  PubMed  Google Scholar 

  50. Wang W et al (2004) Identification and testing of a gene expression signature of invasive carcinoma cells within primary mammary tumors. Cancer Res 64:8585–8594. doi:10.1158/0008-5472.CAN-04-1136

    Article  CAS  PubMed  Google Scholar 

  51. Wang W et al (2005) Tumor cells caught in the act of invading: their strategy for enhanced cell motility. Trends Cell Biol 15:138–145. doi:10.1016/j.tcb.2005.01.003

    Article  CAS  PubMed  Google Scholar 

  52. Wang W et al (2007) Coordinated regulation of pathways for enhanced cell motility and chemotaxis is conserved in rat and mouse mammary tumors. Cancer Res 67:3505–3511. doi:10.1158/0008-5472.CAN-06-3714

    Article  CAS  PubMed  Google Scholar 

  53. Kitzis A et al (2001) Persistence of transcriptionally silent BCR-ABL rearrangements in chronic myeloid leukemia patients in sustained complete cytogenetic remission. Leuk Lymphoma 42:933–944. doi:10.3109/10428190109097712

    Article  CAS  PubMed  Google Scholar 

  54. Chomel JC et al (2000) Persistence of BCR-ABL genomic rearrangement in chronic myeloid leukemia patients in complete and sustained cytogenetic remission after interferon-alpha therapy or allogeneic bone marrow transplantation. Blood 95:404–408

    CAS  PubMed  Google Scholar 

  55. Talpaz M et al (1994) Persistence of dormant leukemic progenitors during interferon-induced remission in chronic myelogenous leukemia. Analysis by polymerase chain reaction of individual colonies. J Clin Invest 94:1383–1389. doi:10.1172/JCI117473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Condeelis J, Singer RH, Segall JE (2005) The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu Rev Cell Dev Biol 21:695–718. doi:10.1146/annurev.cellbio.21.122303.120306

    Article  CAS  PubMed  Google Scholar 

  57. Bissell MJ, Radisky D (2001) Putting tumours in context. Nat Rev Cancer 1:46–54. doi:10.1038/35094059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Koebel CM et al (2007) Adaptive immunity maintains occult cancer in an equilibrium state. Nature 450:903–907

    Article  CAS  PubMed  Google Scholar 

  59. Matzavinos A, Chaplain MA, Kuznetsov VA (2004) Mathematical modelling of the spatio-temporal response of cytotoxic T-lymphocytes to a solid tumour. Math Med Biol 21:1–34

    Article  PubMed  Google Scholar 

  60. Rakhra K et al (2010) CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. Cancer Cell 18:485–498. doi:10.1016/j.ccr.2010.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Malladi S et al (2016) Metastatic latency and immune evasion through autocrine inhibition of WNT. Cell 165:45–60. doi:10.1016/j.cell.2016.02.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Guzvic M, Klein CA (2013) Cancer dormancy: time to explore its clinical relevance. Breast Cancer Res 15:321. doi:10.1186/bcr3590

    Article  PubMed  PubMed Central  Google Scholar 

  63. Klein CA (2008) The direct molecular analysis of metastatic precursor cells in breast cancer: a chance for a better understanding of metastasis and for personalised medicine. Eur J Cancer 44:2721–2725. doi:10.1016/j.ejca.2008.09.035

    Article  CAS  PubMed  Google Scholar 

  64. Chery L et al (2014) Characterization of single disseminated prostate cancer cells reveals tumor cell heterogeneity and identifies dormancy associated pathways. Oncotarget 5:9939–9951. doi:10.18632/oncotarget.2480

    Article  PubMed  PubMed Central  Google Scholar 

  65. Fehm T et al (2008) Tumor cell dormancy: implications for the biology and treatment of breast cancer. APMIS 116:742–753. doi:10.1111/j.1600-0463.2008.01047.x

    Article  CAS  PubMed  Google Scholar 

  66. Klein CA, Holzel D (2006) Systemic cancer progression and tumor dormancy: mathematical models meet single cell genomics. Cell Cycle 5:1788–1798

    Article  CAS  PubMed  Google Scholar 

  67. Abravanel DL et al (2015) Notch promotes recurrence of dormant tumor cells following HER2/neu-targeted therapy. J Clin Invest 125:2484–2496. doi:10.1172/JCI74883

    Article  PubMed  PubMed Central  Google Scholar 

  68. Moody SE et al (2005) The transcriptional repressor snail promotes mammary tumor recurrence. Cancer Cell 8:197–209

    Article  CAS  PubMed  Google Scholar 

  69. Moody SE et al (2002) Conditional activation of Neu in the mammary epithelium of transgenic mice results in reversible pulmonary metastasis. Cancer Cell 2:451–461

    Article  CAS  PubMed  Google Scholar 

  70. Giuriato S et al (2006) Sustained regression of tumors upon MYC inactivation requires p53 or thrombospondin-1 to reverse the angiogenic switch. Proc Natl Acad Sci U S A 103:16266–16271. doi:10.1073/pnas.0608017103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Shachaf CM et al (2004) MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature 431:1112–1117

    Article  CAS  PubMed  Google Scholar 

  72. Adomako A et al (2015) Identification of markers that functionally define a quiescent multiple myeloma cell sub-population surviving bortezomib treatment. BMC Cancer 15:444. doi:10.1186/s12885-015-1460-1

    Article  PubMed  PubMed Central  Google Scholar 

  73. Schewe DM, Aguirre-Ghiso JA (2009) Inhibition of eIF2alpha dephosphorylation maximizes bortezomib efficiency and eliminates quiescent multiple myeloma cells surviving proteasome inhibitor therapy. Cancer Res 69:1545–1552. doi:10.1158/0008-5472.CAN-08-3858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Stoecklein NH, Klein CA (2010) Genetic disparity between primary tumours, disseminated tumour cells, and manifest metastasis. Int J Cancer 126:589–598. doi:10.1002/ijc.24916

    Article  CAS  PubMed  Google Scholar 

  75. Aguirre-Ghiso JA, Ossowski L, Rosenbaum SK (2004) Green fluorescent protein tagging of extracellular signal-regulated kinase and p38 pathways reveals novel dynamics of pathway activation during primary and metastatic growth. Cancer Res 64:7336–7345. doi:10.1158/0008-5472.CAN-04-0113

    Article  CAS  PubMed  Google Scholar 

  76. Rada-Iglesias A et al (2012) Epigenomic annotation of enhancers predicts transcriptional regulators of human neural crest. Cell Stem Cell 11:633–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gao H et al (2014) Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 111:16532–16537. doi:10.1073/pnas.1403234111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Alvarez JV et al (2013) Par-4 downregulation promotes breast cancer recurrence by preventing multinucleation following targeted therapy. Cancer Cell 24:30–44. doi:10.1016/j.ccr.2013.05.007

    Article  CAS  PubMed  Google Scholar 

  79. Felsher DW (2008) Oncogene addiction versus oncogene amnesia: perhaps more than just a bad habit? Cancer Res 68:3081–3086. doi:10.1158/0008-5472.CAN-07-5832. discussion 3086, 68/9/3081 [pii]

    Article  CAS  PubMed  Google Scholar 

  80. Jain M et al (2002) Sustained loss of a neoplastic phenotype by brief inactivation of MYC. Science 297:102–104

    Article  CAS  PubMed  Google Scholar 

  81. Felsher DW, Bishop JM (1999) Reversible tumorigenesis by MYC in hematopoietic lineages. Mol Cell 4:199–207

    Article  CAS  PubMed  Google Scholar 

  82. Liu D, Aguirre Ghiso J, Estrada Y, Ossowski L (2002) EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell 1:445–457

    Article  CAS  PubMed  Google Scholar 

  83. Ossowski L, Reich E (1983) Changes in malignant phenotype of a human carcinoma conditioned by growth environment. Cell 33:323–333

    Article  CAS  PubMed  Google Scholar 

  84. Tsai HC et al (2012) Transient low doses of DNA-demethylating agents exert durable antitumor effects on hematological and epithelial tumor cells. Cancer Cell 21:430–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Kim RS et al (2012) Dormancy signatures and metastasis in estrogen receptor positive and negative breast cancer. PLoS One 7:e35569. doi:10.1371/journal.pone.0035569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Landreville S et al (2012) Histone deacetylase inhibitors induce growth arrest and differentiation in uveal melanoma. Clin Cancer Res 18:408–416. doi:10.1158/1078-0432.CCR-11-0946

    Article  CAS  PubMed  Google Scholar 

  87. Kapoor A et al (2010) The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109. doi:10.1038/nature09590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bernstein E et al (2008) A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc Natl Acad Sci U S A 105:1533–1538. doi:10.1073/pnas.0711632105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang R et al (2005) Formation of MacroH2A-containing senescence-associated heterochromatin foci and senescence driven by ASF1a and HIRA. Dev Cell 8:19–30. doi:10.1016/j.devcel.2004.10.019. S1534580704004083 [pii]

    Article  CAS  PubMed  Google Scholar 

  90. Gaspar-Maia A et al (2013) MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat Commun 4:1565

    Article  PubMed  PubMed Central  Google Scholar 

  91. Vardabasso C et al (2015) Histone variant H2A.Z.2 mediates proliferation and drug sensitivity of malignant melanoma. Mol Cell 59:75–88. doi:10.1016/j.molcel.2015.05.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Duarte LF et al (2014) Histone H3.3 and its proteolytically processed form drive a cellular senescence programme. Nat Commun 5:5210. doi:10.1038/ncomms6210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Duncan EM et al (2008) Cathepsin L proteolytically processes histone H3 during mouse embryonic stem cell differentiation. Cell 135:284–294. doi:10.1016/j.cell.2008.09.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Allis CD, Bowen JK, Abraham GN, Glover CV, Gorovsky MA (1980) Proteolytic processing of histone H3 in chromatin: a physiologically regulated event in Tetrahymena micronuclei. Cell 20:55–64

    Article  CAS  PubMed  Google Scholar 

  95. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14:329–340. doi:10.1038/nrm3591

    Article  CAS  PubMed  Google Scholar 

  96. Aguirre-Ghiso JA, Liu D, Mignatti A, Kovalski K, Ossowski L (2001) Urokinase receptor and fibronectin regulate the ERK(MAPK) to p38(MAPK) activity ratios that determine carcinoma cell proliferation or dormancy in vivo. Mol Biol Cell 12:863–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kim J, Chu J, Shen X, Wang J, Orkin SH (2008) An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:1049–1061. doi:10.1016/j.cell.2008.02.039

    Article  CAS  PubMed  Google Scholar 

  98. Taranova OV et al (2006) SOX2 is a dose-dependent regulator of retinal neural progenitor competence. Genes Dev 20:1187–1202. doi:10.1101/gad.1407906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hadfield G (1954) The dormant cancer cell. Br Med J 2:607–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Braun S et al (2005) A pooled analysis of bone marrow micrometastasis in breast cancer. N Engl J Med 353:793–802

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maria Soledad Sosa , Emily Bernstein or Julio A. Aguirre-Ghiso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sosa, M.S., Bernstein, E., Aguirre-Ghiso, J.A. (2017). Epigenetic Regulation of Cancer Dormancy as a Plasticity Mechanism for Metastasis Initiation. In: Wang, Y., Crea, F. (eds) Tumor Dormancy and Recurrence. Cancer Drug Discovery and Development. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59242-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59242-8_1

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59240-4

  • Online ISBN: 978-3-319-59242-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics