Advertisement

Extending Extremal Polygonal Arrays for the Merrifield-Simmons Index

  • Guillermo De Ita Luna
  • J. Raymundo Marcial-RomeroEmail author
  • J. A. Hernández
  • Rosa Maria Valdovinos
  • Marcelo Romero
Conference paper
  • 895 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)

Abstract

Polygonal array graphs have been widely investigated, and they represent a relevant area of interest in mathematical chemistry because they have been used to study intrinsic properties of molecular graphs. For example, to determine the Merrifield-Simmons index of a polygonal array \(A_n\) that is the number of independent sets of that graph, denoted as \(i(A_n)\).

In this paper we consider the problem of extending an initial polygonal array \(A_n\) adding a new polygon p to form \(A_{n+1}\), for minimizing or maximizing the Merrifield-Simmons index \(i(A_{n+1}) = i(A_n \cup p)\). Our method does not require to compute \(i(A_n)\) or \(i(A_n \cup p)\), explicitly.

Keywords

Counting the number of independent sets Enumerative algorithms Efficient counting Merrifield-Simmons index 

References

  1. 1.
    Došlić, T., Måløy, F.: Chain hexagonal cacti: matchings and independent sets. Discrete Math. 310, 1676–1690 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Yuefen, C., Fuji, Z.: Extremal polygonal chains on \(k\)-matchings. MATCH Commun. Math. Comput. Chem. 60, 217–235 (2008)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Gutman, I.: Extremal hexagonal chains. J. Math. Chem. 12, 197–210 (1993)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Zhang, L.Z.: The proof of Gutman’s conjectures concerning extremal hexagonal chains. J. Syst. Sci. Math. Sci. 18(4), 460–465 (1998)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Zhang, L.Z., Zhang, F.: Extremal hexagonal chains concerning \(k\)-matchings and \(k\)-independent sets. J. Math. Chem. 27, 319–329 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Wagner, S., Gutman, I.: Maxima and minima of the Hosoya index and the Merrifield-Simmons index. Acta Applicandae Mathematicae 112(3), 323–346 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Deng, H.: Catacondensed benzenoids and phenylenes with the extremal thirdorder Randic Index1. Comm. Math. Comp. Chem. 64, 471–496 (2010)zbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Guillermo De Ita Luna
    • 1
  • J. Raymundo Marcial-Romero
    • 2
    Email author
  • J. A. Hernández
    • 2
  • Rosa Maria Valdovinos
    • 2
  • Marcelo Romero
    • 2
  1. 1.Facultad de Ciencias de la Computación, BUAPPueblaMexico
  2. 2.Facultad de Ingeniería, UAEMTolucaMexico

Personalised recommendations