Advertisement

Visual Remote Monitoring and Control System for Rod Braking on Hot Rolling Mills

  • Oleg StarostenkoEmail author
  • Irina G. Trygub
  • Claudia Cruz-Perez
  • Vicente Alarcon-Aquino
  • Oleg E. Potap
Conference paper
  • 882 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)

Abstract

In steel production the finishing process on hot rolling mill includes a set of essential operations managed by complex control mechanical, electrical and hydraulic equipment. However, accuracy of mill automating mechanisms and sensors is still low due to hot hostile environment with strong vibration and shock. The proposed solution is a computer vision application that exploits morphological filtering and discontinuity masks for detection and separation of rods on rolling mill and provides fast recognition and tracking rod front ends during their deceleration on cooler. The proposed algorithm has been implemented and evaluated in real time conditions achieving precision of rod front end recognition in range of 90–98% on artificial and daylight illumination, respectively.

Keywords

Computer vision Morphological filtering Pattern recognition and tracking Steel manufacturing on rolling mill 

Notes

Acknowledgments

This research is partially sponsored by European Grant: Customised Advisory Sustainable Manufacturing Services, EU FP7 PEOPLE IRSES.

References

  1. 1.
    Pittner, J., Simaan, M.A.: An initial model for control of a tandem hot metal strip rolling process. IEEE Trans. Industry Applications 46(1), 46–53 (2010). doi: 10.1109/TIA.2009.2036539 CrossRefGoogle Scholar
  2. 2.
    Potapov O., Egorov A.P., et al: The patent 91194 Ukraine, IPC (2014.01) V21 V 37/00. The automatic leveling control rental on the small-mill refrigerator, SHEE “NSU”. - № u 2014 00580; publ. 06.25.2014, Bull. Number 12 (2014)Google Scholar
  3. 3.
    Pittner J., Simaan M.A.: Advanced control using virtual processing for threading a hot metal strip mill. In: IEEE American Control Conference (ACC), MA, USA, pp. 1–8 (2016) doi: 10.1109/ACC.2016.7525421
  4. 4.
    Yildiz, S.K., Forbes, J.F., et al.: Dynamic modelling and simulation of a hot strip finishing mill. J. Appl. Mat. Modelling 3, 3208–3225 (2009). doi: 10.1016/j.apm.2008.10.035 CrossRefzbMATHGoogle Scholar
  5. 5.
    Karpinski, Y.P.: WB system – system of creation and implementation. In: Karpinski Y.P., Kuva V.N., Kukushkin O.N., Chygrynskiy V.A. (eds.) Fundamental and Applied Problems of Ferrous Metallurgy, Proceeding of Science Reports, Dnipropetrovsk, National Academy of Sciences of Ukraine, vol. 17, pp. 301–310 (2008)Google Scholar
  6. 6.
    Jelali, M.: Performance monitoring of metal processing control systems. In: Jelali, M. (ed.) Control Performance Management in Industrial Automation, pp. 1–457. Springer, London (2013). doi: 10.1007/978-1-4471-4546-2 CrossRefGoogle Scholar
  7. 7.
    Primetals Technologies: The new global competence in hot rolling, Japan, No.T04-0-N027-L4-P-V2-EN, Primetals Technologies Ltd. (2016). http://primetals.com/en/technologies/hot-rolling-flat/hot-strip-mill/
  8. 8.
    IMS-Group, Measuring systems in hot strip mills (2017). http://www.ims-gmbh.de/unternehmen/
  9. 9.
    Shore T.M.: US Patent US7207202 B1 Method of subdividing and decelerating hot rolled long products, (2007). http://www.google.com/patents/US7207202
  10. 10.
    ArcelorMittal: Maximising the processes that convert iron ore and coal into finished steel products (2017). http://corporate.arcelormittal.com/
  11. 11.
    Gibson, J., Marques, O.: Optical flow and trajectory methods in context. In: Gibson, J., Marques, O. (eds.) Optical Flow and Trajectory Estimation Methods. Springer Briefs in Computer Science, vol. 49, pp. 9–23. Springer, Heidelberg (2016)CrossRefGoogle Scholar
  12. 12.
    Fitzner, D., Sester, M.: Field motion estimation with a geosensor network. Int. J. Geo-Inform. 5(175), 1–22 (2016). doi: 10.3390/ijgi5100175 Google Scholar
  13. 13.
    Peng, Z., Yu, D., Huang, D., Heiser, J., Kalb, P.: A hybrid approach to estimate the complex motions of clouds in sky images. Sol. Energy 138, 10–25 (2016)CrossRefGoogle Scholar
  14. 14.
    Cruz-Perez, C., Starostenko, O., Alarcon-Aquino, V., Rodriguez-Asomoza, J.: Automatic image annotation for description of urban and outdoor scenes. In: Sobh, T., Elleithy, K. (eds.) Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering. LNEE, vol. 313, pp. 139–147. Springer, Cham (2015). doi: 10.1007/978-3-319-06773-5_20 Google Scholar
  15. 15.
    Deshmukh, A.C., Gaikwad, P.R., Patil, M.P.: A comparative study of feature detection methods. Int. J. Electr. Electron. Eng. Telecommun. 4(2), 1–7 (2015). http://ijeetc.com/ijeetcadmin/upload/IJEETC_5524b6e0c6527.pdf Google Scholar
  16. 16.
    Starostenko, O., Cortes, X., Sanchez, J.A., Alarcon-Aquino, V.: Unobtrusive emotion sensing and interpretation in smart environment. J. Ambient Intell. Smart Environ. 7(1), 59–83 (2015)Google Scholar
  17. 17.
    Fouda, Y.M.: A robust template matching algorithm based on reducing dimensions. J. Signal Inform. Process. 6, 109–122 (2015)CrossRefGoogle Scholar
  18. 18.
    Sharma, S.: Template matching approach for face recognition system. Int. J. Signal Process. Syst. 1(2), 284–289 (2013)CrossRefGoogle Scholar
  19. 19.
    Rivera-Rubio, J., Alexiou, I.I., Bharath, A.A.: Appearance-based indoor localization: a comparison of patch descriptor performance. Pattern Recogn. Letters 66, 109–117 (2015)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Oleg Starostenko
    • 1
    Email author
  • Irina G. Trygub
    • 2
  • Claudia Cruz-Perez
    • 1
  • Vicente Alarcon-Aquino
    • 1
  • Oleg E. Potap
    • 2
  1. 1.Department of Computing, Electronics and MechatronicsUniversidad de las Américas PueblaCholulaMexico
  2. 2.Department Automation of Production Processes National Metallurgical Academy of UkraineDniproUkraine

Personalised recommendations