BUSAT: A MATLAB Toolbox for Breast Ultrasound Image Analysis

  • Arturo Rodríguez-CristernaEmail author
  • Wilfrido Gómez-Flores
  • Wagner Coelho de Albuquerque-Pereira
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)


This paper presents the Breast Ultrasound Analysis Toolbox (BUSAT) for MATLAB, which contains 62 functions to perform image preprocessing, lesion segmentation, feature extraction, and lesion classification. BUSAT is useful to codify programs for computer-aided diagnosis (CAD) purposes in reduced time; hence, to replicate several approaches proposed in literature is feasible. We provide the implementation of a CAD system to classify breast lesions into benign and malignant classes and an example to evaluate the classification performance. BUSAT could be downloaded from the following permanent link:


Breast ultrasound Image analysis Computer-aided diagnosis MATLAB 


  1. 1.
    Ferlay, J., Soerjomataram, I., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D., Bray, F.: Cancer incidence and mortality worldwide: sources, methods and major patterns in globocan 2012. Int. J. Cancer 136(5), E359–E386 (2015)CrossRefGoogle Scholar
  2. 2.
    Kelly, K.M., Dean, J., Comulada, W.S., Lee, S.J.: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur. Radiol. 20(3), 734–742 (2010)CrossRefGoogle Scholar
  3. 3.
    Stavros, A.T., Thickman, D., Rapp, C.L., Dennis, M.A., Parker, S.H., Sisney, G.A.: Solid breast nodules: use of sonography to distinguish between benign and malignant lesions. Radiology 196(1), 123–134 (1995)CrossRefGoogle Scholar
  4. 4.
    Cheng, H.D., Shan, J., Ju, W., Guo, Y., Zhang, L.: Automated breast cancer detection and classification using ultrasound images: a survey. Pattern Recogn. 43, 299–317 (2010)CrossRefzbMATHGoogle Scholar
  5. 5.
    Drukker, K., Gruszauskas, N.P., Sennett, C.A., Giger, M.L.: Breast us computer-aided diagnosis workstation: performance with a large clinical diagnostic population. Radiology 248(2), 392–397 (2008)CrossRefGoogle Scholar
  6. 6.
    Huang, Q., Luo, Y., Zhang, Q.: Breast ultrasound image segmentation: a survey. Int. J. Comput. Assist. Radiol. Surg. 12(3), 493–507 (2017)CrossRefGoogle Scholar
  7. 7.
    MathWorks: Matlab. the language of technical computingGoogle Scholar
  8. 8.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 27 (2011)Google Scholar
  9. 9.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  10. 10.
    Gómez, W., Pereira, W.C.A., Infantosi, A.: Improving classification performance of breast lesions on ultrasonography. Pattern Recogn. 48(4), 1125–1136 (2015)CrossRefGoogle Scholar
  11. 11.
    Gómez, W., Leija, L., Alvarenga, A.V., Infantosi, A.F.C., Pereira, W.C.A.: Computerized lesion segmentation of breast ultrasound based on marker-controlled watershed transformation. Med. Phys. 37(1), 82–95 (2010)CrossRefGoogle Scholar
  12. 12.
    Sokolova, M., Lapalme, G.: A systematic analysis of performance measures for classification tasks. Inf. Process. Manage. 45(4), 427–437 (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Arturo Rodríguez-Cristerna
    • 1
    Email author
  • Wilfrido Gómez-Flores
    • 1
  • Wagner Coelho de Albuquerque-Pereira
    • 2
  1. 1.Center for Research and Advanced Studies of the National Polytechnic InstituteCiudad VictoriaMexico
  2. 2.Biomedical Engineering Program, COPPEFederal University of Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations