Advertisement

An Approach Based in LSA for Evaluation of Ontological Relations on Domain Corpora

  • Mireya TovarEmail author
  • David Pinto
  • Azucena Montes
  • Gabriel González
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)

Abstract

In this paper we present an approach for the automatic evaluation of relations in ontologies of restricted domain. We use the evidence found in a corpus associated to the same domain of the ontology for determining the validity of the ontological relations. Our approach employs Latent Semantic Analysis, a technique based on the principle that the words in a same context tend to have semantic relationships. The approach uses two variants for evaluating the semantic relations and concepts of the target ontologies. The performance obtained was about 70% for class-inclusion relations and 78% for non-taxonomic relations.

Keywords

Ontology evaluation Latent semantic analysis Natural language processing 

References

  1. 1.
    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Technical report KSL-93-04, Knowledge Systems Laboratory, USA (1993)Google Scholar
  2. 2.
    Novelli, A.D.P., de Oliveira, J.M.P., Maria, J.: Simple method for ontology automatic extraction from documents. Int. J. Adv. Comput. Sci. Appl. (IJACSA) 3(12), 44–51 (2012). http://ijacsa.thesai.org/ Google Scholar
  3. 3.
    Cederberg, S., Widdows, D.: Using LSA and noun coordination information to improve the precision and recall of automatic hyponymy extraction. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL (CONLL 2003), Stroudsburg, vol. 4, pp. 111–118. Association for Computational Linguistics (2003)Google Scholar
  4. 4.
    Sheena, N., Jasmine, S.M., Joseph, S.: Automatic extraction of hypernym and meronym relations in English sentences using dependency parser. Procedia Comput. Sci. 93, 539–546 (2016). Proceedings of the 6th International Conference on Advances in Computing and CommunicationsCrossRefGoogle Scholar
  5. 5.
    Sankat, M., Thakur, R., Jaloree, S.: Design of ontology learning model based on text classification for domain concept taxonomy. IJSRSET 2, 138–142 (2016). Themed Section: Engineering and TechnologyGoogle Scholar
  6. 6.
    Venegas, V.R.: Análisis Semántico Latente: una panorámica de su desarrollo. Revista signos 36, 121–138 (2003)CrossRefGoogle Scholar
  7. 7.
    Sidorov, G.: Non-linear Construction of n-grams in Computational Linguistics: Syntactic, Filtered, and Generalized n-grams. Instituto Politécnico Nacional, Mexico (2013)Google Scholar
  8. 8.
    Landauer, T.K., Dutnais, S.T.: A solution to platoś problem: the latent semantic analysis theory of acquisition, induction, and representation of knowledge. Psychol. Rev. 104, 211–240 (1997)CrossRefGoogle Scholar
  9. 9.
    Vázquez Pérez, S.: Resolucin de la ambigedad semntica mediante mtodos basados en conocimiento y su aportacin a tareas de PLN. Ph.D. thesis, Universidad de Alicante (2009)Google Scholar
  10. 10.
    Lin, D., Pantel, P.: Concept discovery from text. In: Proceedings of the 19th International Conference on Computational Linguistics (COLING 2002), Stroudsburg, vol. 1, pp. 1–7. Association for Computational Linguistics (2002)Google Scholar
  11. 11.
    Pantel, P.A.: Clustering by committee. Ph.D. thesis, University of Alberta (2003)Google Scholar
  12. 12.
    Pantel, P., Lin, D.: Discovering word senses from text. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 2002), pp. 613–619. ACM, New York (2002)Google Scholar
  13. 13.
    Pantel, P., Lin, D.: Document clustering with committees. In: Proceedings of the 25th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR 2002), pp. 199–206. ACM, New York (2002)Google Scholar
  14. 14.
    Chatterjee, N., Mohan, S.: Discovering word senses from text using random indexing. In: Gelbukh, A. (ed.) CICLing 2008. LNCS, vol. 4919, pp. 299–310. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-78135-6_25 CrossRefGoogle Scholar
  15. 15.
    Porter, M.F.: Readings in Information Retrieval. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  16. 16.
    Zouaq, A., Gasevic, D., Hatala, M.: Linguistic patterns for information extraction in ontocmaps. In: Blomqvist, E., Gangemi, A., Hammar, K., del Carmen Suárez-Figueroa, M. (eds.) WOP. CEUR Workshop Proceedings, vol. 929. CEUR-WS.org (2012)Google Scholar
  17. 17.
    Tovar, M., Pinto, D., Montes, A., González, G., Ayala, D.V., Beltrán, B.: Validación de conceptos ontoógicos usando métodos de agrupamiento. Res. Comput. Sci. 73, 9–16 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mireya Tovar
    • 1
    Email author
  • David Pinto
    • 1
  • Azucena Montes
    • 2
  • Gabriel González
    • 3
  1. 1.Faculty of Computer ScienceBenemérita Universidad Autónoma de PueblaPueblaMexico
  2. 2.TecNMInstituto Tecnológico de TlalpanMexico CityMexico
  3. 3.Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET)CuernavacaMexico

Personalised recommendations