On the Detectability of Buried Remains with Hyperspectral Measurements

  • José Luis Silván-CárdenasEmail author
  • Nirani Corona-Romero
  • José Manuel Madrigal-Gómez
  • Aristides Saavedra-Guerrero
  • Tania Cortés-Villafranco
  • Erick Coronado-Juárez
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)


In this study we tested some methods for detecting clandestine graves using hyperspectral remote sensing technology. Specifically, we addressed three research questions: What is the true potential of hyperspectral images for detecting buried remains? What is the useful information in hyperspectral images for detecting buried remains? When they should be acquired following a burial? For this matter, we simulated seven graves with varying number of carcasses of domestic pigs and monitored the spectral reflectance of the surface during a period of six months. A total of twelve hyperspectral images were formed and analyzed using standard pattern recognition methods. Results indicated that hyperspectral data can indeed have a true potential for detecting buried remains, but the detection can succeed only after three months from burial, and the useful wavelength intervals are mainly distributed along the spectral range of 700–1800 nm and with several narrow intervals that could not have been discovered using multispectral sensors.


Remote sensing Clandestine graves Hyperspectral images Partial least squares 


  1. 1.
    Carter, D.O., Tibbett, M.: Cadaver decomposition and soil: processes. In: Soil Analysis in Forensic Taphonomy, pp. 29–52. CRC Press, Boca Raton (2008)Google Scholar
  2. 2.
    Carter, D.O., Yellowlees, D., Tibbett, M.: Cadaver decomposition in terrestrial ecosystems. Naturwissenschaften 94(1), 12–24 (2007)CrossRefGoogle Scholar
  3. 3.
    Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Measur. 20(1), 37–46 (1960)Google Scholar
  4. 4.
    France, D.L., Griffin, T.J., Swanburg, J.G., Lindemann, J.W., Davenport, G.C., Trammell, V., Armbrust, C.T., Kondratieff, B., Nelson, A., Castellano, K., et al.: A multidisciplinary approach to the detection of clandestine graves. J. Forensic Sci. 37(6), 1445–1458 (1992)CrossRefGoogle Scholar
  5. 5.
    Gosselin, R., Rodrigue, D., Duchesne, C.: A bootstrap-vip approach for selecting wavelength intervals in spectral imaging applications. Chemom. Intell. Lab. Syst. 100(1), 12–21 (2010)CrossRefGoogle Scholar
  6. 6.
    Jahn, B., Upadhyaya, S.: Determination of soil nitrate and organic matter content using portable, filter-based mid-infrared spectroscopy. In: Rossel, R.A.V., McBratney, A.B., Minasny, B. (eds.) Proximal Soil Sensing, pp. 143–152. Springer, New York (2010)Google Scholar
  7. 7.
    de Jong, S.: Simpls: an alternative approach to partial least squares regression. Chemom. Intell. Lab. Syst. 18, 251–263 (1993)CrossRefGoogle Scholar
  8. 8.
    Kalacska, M., Bell, L.: Remote sensing as a tool for the detection of clandestine mass graves. Can. Soc. Forensic Sci. J. 39(1), 1–13 (2006)CrossRefGoogle Scholar
  9. 9.
    Kalacska, M.E., Bell, L.S., Sanchez-Azofeifa, G.A., Caelli, T.: The application of remote sensing for detecting mass graves: an experimental animal case study from Costa Rica. J. Forensic Sci. 54(1), 159–166 (2009)CrossRefGoogle Scholar
  10. 10.
    Leblanc, G., Kalacska, M., Soffer, R.: Detection of single graves by airborne hyperspectral imaging. Forensic Sci. Int. 245, 17–23 (2014)CrossRefGoogle Scholar
  11. 11.
    Mehmood, T., Liland, K.H., Snipen, L., Sæbø, S.: A review of variable selection methods in partial least squares regression. Chemom. Intell. Lab. Syst. 118, 62–69 (2012)CrossRefGoogle Scholar
  12. 12.
    Molina, C.M., Pringle, J.K., Saumett, M., Evans, G.T.: Geophysical and botanical monitoring of simulated graves in a tropical rainforest, Colombia, South America. J. Appl. Geophys. 135, 232–242 (2016)CrossRefGoogle Scholar
  13. 13.
    Pringle, J., Ruffell, A., Jervis, J., Donnelly, L., McKinley, J., Hansen, J., Morgan, R., Pirrie, D., Harrison, M.: The use of geoscience methods for terrestrial forensic searches. Earth-Sci. Rev. 114(1), 108–123 (2012)CrossRefGoogle Scholar
  14. 14.
    Rosipal, R., Krämer, N.: Overview and recent advances in partial least squares. In: Saunders, C., Grobelnik, M., Gunn, S., Shawe-Taylor, J. (eds.) SLSFS 2005. LNCS, vol. 3940, pp. 34–51. Springer, Heidelberg (2006). doi: 10.1007/11752790_2 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • José Luis Silván-Cárdenas
    • 1
    Email author
  • Nirani Corona-Romero
    • 1
  • José Manuel Madrigal-Gómez
    • 1
  • Aristides Saavedra-Guerrero
    • 1
  • Tania Cortés-Villafranco
    • 1
  • Erick Coronado-Juárez
    • 1
  1. 1.Centro de Investigación en Geografía y Geomática “Ing. Jorge L. Tamayo” A.C.Mexico D.F.Mexico

Personalised recommendations