Advertisement

Image Noise Filter Based on DCT and Fast Clustering

  • Miguel de Jesús Martínez Felipe
  • Edgardo M. Felipe Riveron
  • Pablo Manrique Ramirez
  • Oleksiy PogrebnyakEmail author
Conference paper
  • 929 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)

Abstract

An algorithm for filtering images contaminated by additive white Gaussian noise in discrete cosine transform domain is proposed. The algorithm uses a clustering stage to obtain mean power spectrum of each cluster. The groups of clusters are found by the proposed fast algorithm based on 2D histograms and watershed transform. In addition to the mean spectrum of each cluster, the local groups of similar patches are found to obtain the local spectrum, and therefore, derive the local Wiener filter frequency response better and perform the collaborative filtering over the groups of patches. The obtained filtering results are compared to the state-of-the-art filters in terms of peak signal-to-noise ratio and structural similarity index. It is shown that the proposed algorithm is competitive in terms of signal-to-noise ratio and in almost all cases is superior to the state-of-the art filters in terms of structural similarity.

Keywords

Noise suppression Collaborative filtering Fast image clustering 

Notes

Acknowledgment

This work partially was supported by Instituto Politecnico Nacional as a part of research project SIP# 20171559 .

References

  1. 1.
    Pratt, W.K.: Digital Image Processing, 4th edn. Wiley-Interscience, New York (2007)CrossRefzbMATHGoogle Scholar
  2. 2.
    Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005). doi: 10.1137/040616024 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007). doi: 10.1109/TIP.2007.901238 MathSciNetCrossRefGoogle Scholar
  4. 4.
    Foi, A., Katkovnik, V., Egiazarian, K.: Pointwise shape-adaptive DCT for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007). doi: 10.1109/TIP.2007.891788 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chatterjee, P., Milanfar, P.: Is denoising dead? IEEE Trans. Image Process. 19(4), 895–911 (2010). doi: 10.1109/TIP.2009.2037087 MathSciNetCrossRefGoogle Scholar
  6. 6.
    Aharon, M., Elad, M., Bruckstein, A.M.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Sig. Process. 54(11), 4311–4322 (2006). doi: 10.1109/TSP.2006.881199 CrossRefGoogle Scholar
  7. 7.
    Dong, W., Zhang, L., Shi, G., Li, X.: Nonlocally centralized sparse representation for image restoration. IEEE Trans. Image Process. 22(4), 1620–1630 (2013). doi: 10.1109/TIP.2012.2235847 MathSciNetCrossRefGoogle Scholar
  8. 8.
    He, N., Wang, J.B., Zhang, L.L., Xu, G.M., Lu, K.: Non-local sparse regularization model with application to image denoising. Multimedia Tools Appl. 75(5), 2579–2594 (2016). doi: 10.1007/s11042-015-2471-2 CrossRefGoogle Scholar
  9. 9.
    Pogrebnyak,O., Lukin., V.: Wiener discrete cosine transform-based image filtering. J. Electron. Imaging 21(4), 043020-1–043020-15 (2012). doi: 10.1117/1.JEI.21.4.043020
  10. 10.
    Fevralev, D., Lukin, V., Ponomarenko, N., Abramov, S., Egiazarian, K., Astola, J.: Efficiency analysis of color image filtering. EURASIP J. Adv. Sig. Process. 2011(41), 1–19 (2011). doi: 10.1186/1687-6180-2011-41 Google Scholar
  11. 11.
    Leburn, M.: An analysis and implementation of the BM3D image denoising method. Image Process. Line 2, 175–213 (2012). doi: 10.5201/ipol.2012.l-bm3d CrossRefGoogle Scholar
  12. 12.
    Lukin, V., Abramov, S., Krivenko, S., Kurekin, A., Pogrebnyak, O.: Analysis of classification accuracy for pre-filtered multichannel remote sensing data. Expert Syst. Appl. 40(16), 6400–6411 (2013). doi: 10.1016/j.eswa.2013.05.061 CrossRefGoogle Scholar
  13. 13.
    Egiazarian, K., Astola, J., Ponomarenko, N., Lukin, V., Battisti, F., Carli, M.: New full-reference quality metrics based on HVS. In: CD-ROM Proceedings of the Second International Workshop on Video Processing and Quality Metrics, Scottsdale, USA, 4 pages (2006)Google Scholar
  14. 14.
    Ponomarenko, N., Silvestri, F., Egiazarian, K., Carli, M., Lukin, V.: On between-coefficient contrast masking of DCT basis functions. In: CD-ROM Proceedings of Third International Workshop on Video Processing and Quality Metrics for Consumer Electronics, VPQM 2007, January, 4 pages (2007)Google Scholar
  15. 15.
    Zhang, L., Zhang, L., Mou, X., Zhang, D.: FSIM: a feature SIMilarity index for image quality assessment. IEEE Trans. Image Process. 20(8), 2378–2386 (2011). doi: 10.1109/TIP.2011.2109730 MathSciNetCrossRefGoogle Scholar
  16. 16.
    Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). doi: 10.1109/TIP.2003.819861 CrossRefGoogle Scholar
  17. 17.
    Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, vol. 2, pp. 1398–1402 (2003). doi: 10.1109/ACSSC.2003.1292216
  18. 18.
    Callejas Ramos, A.I., Felipe-Riveron, E.M., Manrique Ramirez, P., Pogrebnyak, O.: Image filter based on block matching, discrete cosine transform and principal component analysis, Lecture Notes in Artificial Intelligence, Subseries of Lecture Notes in Computer Science. In: Advances in Artificial Intelligence, MICAI 2016 (To be published in 2017)Google Scholar
  19. 19.
    Beucher, S., Meyer, F.: The morphological approach to segmentation: the watershed transformation. In: Dougherty, E.R. (ed.) Mathematical Morphology in Image Processing, pp. 433–481 (1993)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Miguel de Jesús Martínez Felipe
    • 1
  • Edgardo M. Felipe Riveron
    • 1
  • Pablo Manrique Ramirez
    • 1
  • Oleksiy Pogrebnyak
    • 1
    Email author
  1. 1.Centro de Investigacion en Computacion, Instituto Politecnico NacionalMexico, D.F.Mexico

Personalised recommendations