Fast-BR vs. Fast-CT_EXT: An Empirical Performance Study

  • Vladímir Rodríguez-DiezEmail author
  • José Fco. Martínez-Trinidad
  • J. Ariel Carrasco-Ochoa
  • Manuel S. Lazo-Cortés
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10267)


Testor Theory allows performing feature selection in supervised classification problems through typical testors. Typical testors are irreducible subsets of features preserving the object discernibility ability of the original set of features. However, finding the complete set of typical testors for a dataset requires a high computational effort. In this paper, we make an empirical study about the performance of two of the most recent and fastest algorithms of the state of the art for computing typical testors, regarding the density of the basic matrix. For our study we use synthetic basic matrices to control their characteristics, but we also include public standard datasets taken from the UCI machine learning repository. Finally, we discuss our conclusions drawn from this study.


Testor theory Algorithms Basic matrix 



This work was partly supported by National Council of Science and Technology of Mexico under the scholarship grant 399547.


  1. 1.
    Águila, L., Ruíz-Shulcloper, J.: Algorithm CC for the elaboration of k-valued information on pattern recognition problems. Math. Sci. J. 5(3) (1984). (in Spanish)Google Scholar
  2. 2.
    Alba-Cabrera, E., Ibarra-Fiallo, J., Godoy-Calderon, S.: A theoretical and practical framework for assessing the computational behavior of typical testor-finding algorithms. In: Ruiz-Shulcloper, J., Sanniti di Baja, G. (eds.) CIARP 2013. LNCS, vol. 8258, pp. 351–358. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-41822-8_44 CrossRefGoogle Scholar
  3. 3.
    Alba-Cabrera, E., Ibarra-Fiallo, J., Godoy-Calderon, S., Cervantes-Alonso, F.: YYC: a fast performance incremental algorithm for finding typical testors. In: Bayro-Corrochano, E., Hancock, E. (eds.) CIARP 2014. LNCS, vol. 8827, pp. 416–423. Springer, Cham (2014). doi: 10.1007/978-3-319-12568-8_51 Google Scholar
  4. 4.
    Ayaquica, I.O.: A new external scale algorithm for typical testor computation. In: Memories of the Second Ibero American Workshop on Pattern Recognition, Havana, pp. 141–148 (1997). (in Spanish)Google Scholar
  5. 5.
    Bache, K., Lichman, M.: UCI machine learning repository (2013)Google Scholar
  6. 6.
    Bravo-Martínez, A.: Algorithm CT for calculating the typical testors of k-valued matrix. Math. Sci. J. 4(2), 123–144 (1983). (in Spanish)Google Scholar
  7. 7.
    Chikalov, I., Lozin, V.V., Lozina, I., Moshkov, M., Nguyen, H.S., Slowron, A., Zielosko, B.: Three Approaches to Data Analysis: Test Theory, Rough Sets and Logical Analysis of Data. Intelligent Systems Reference Library, vol. 41. Springer, Heidelberg (2013)zbMATHGoogle Scholar
  8. 8.
    Flores, M.J., Gámez, J.A., Martínez, A.M., Puerta, J.M.: Analyzing the impact of the discretization method when comparing bayesian classifiers. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds.) IEA/AIE 2010. LNCS, vol. 6096, pp. 570–579. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13022-9_57 CrossRefGoogle Scholar
  9. 9.
    González-Guevara, V.I., Godoy-Calderón, S., Alba-Cabrera, E., Ibarra-Fiallo, J.: A mixed learning strategy for finding typical testors in large datasets. In: Pardo, A., Kittler, J. (eds.) Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications. LNCS, vol. 9423. Springer, Cham (2015). doi: 10.1007/978-3-319-25751-8_86 Google Scholar
  10. 10.
    Lazo-Cortés, M., Ruíz-Shulcloper, J., Alba-Cabrera, E.: An overview of the evolution of the concept of testor. Pattern Recognit. 34, 753–762 (2001)CrossRefzbMATHGoogle Scholar
  11. 11.
    Lias-Rodríguez, A., Pons-Porrata, A.: BR: a new method for computing all typical testors. In: Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 433–440. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10268-4_50 CrossRefGoogle Scholar
  12. 12.
    Lias-Rodríguez, A., Sanchez-Díaz, G.: An algorithm for computing typical testors based on elimination of gaps and reduction of columns. Int. J. Pattern Recognit. Artif. Intell. 27(08), 1350022 (2013)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Martínez-Trinidad, J.F., Guzmán-Arenas, A.: The logical combinatorial approach to pattern recognition an overview through selected works. Pattern Recognit. 34, 741–751 (2001)CrossRefzbMATHGoogle Scholar
  14. 14.
    Rodríguez-Diez, V., Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Lazo-Cortés, M., Feregrino-Uribe, C., Cumplido, R.: A fast hardware software platform for computing irreducible testors. Expert Syst. Appl. 42(24), 9612–9619 (2015)CrossRefGoogle Scholar
  15. 15.
    Ruíz-Shulcloper, J., Alba-Cabrera, E., Lazo-Cortés, M.: Introduction to typical testors theory. Green Series, No. 50. CINVESTAV-IPN, México (1995). (in Spanish)Google Scholar
  16. 16.
    Ruíz-Shulcloper, J., Aguila, L., Bravo, A.: BT and TB algorithms for computing all irreducible testors. Math. Sci. J. 2, 11–18 (1982). (in Spanish)Google Scholar
  17. 17.
    Ruíz-Shulcloper, J.: Pattern recognition with mixed and incomplete data. Pattern Recognit. Image Anal. 18(4), 563–576 (2008)CrossRefGoogle Scholar
  18. 18.
    Sanchez-Díaz, G., Lazo-Cortés, M.: CT-EXT: an algorithm for computing typical testor set. In: Rueda, L., Mery, D., Kittler, J. (eds.) CIARP 2007. LNCS, vol. 4756, pp. 506–514. Springer, Heidelberg (2007). doi: 10.1007/978-3-540-76725-1_53 CrossRefGoogle Scholar
  19. 19.
    Sanchez-Diaz, G., Piza-Davila, I., Lazo-Cortes, M., Mora-Gonzalez, M., Salinas-Luna, J.: A fast implementation of the CT_EXT algorithm for the testor property identification. In: Sidorov, G., Hernández Aguirre, A., Reyes García, C.A. (eds.) MICAI 2010. LNCS, vol. 6438, pp. 92–103. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-16773-7_8 CrossRefGoogle Scholar
  20. 20.
    Santiesteban, Y., Pons-Porrata, A.: LEX: a new algorithm for the calculus of typical testors. Math. Sci. J. 21(1), 85–95 (2003). (in Spanish)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Vladímir Rodríguez-Diez
    • 1
    • 2
    Email author
  • José Fco. Martínez-Trinidad
    • 1
  • J. Ariel Carrasco-Ochoa
    • 1
  • Manuel S. Lazo-Cortés
    • 1
  1. 1.Coordinación de Ciencias ComputacionalesInstituto Nacional de Astrofísica, Óptica y ElectrónicaTonantzintlaMexico
  2. 2.Universidad de CamagüeyCamagüeyCuba

Personalised recommendations