Skip to main content

Abstract

Pochonia parasitizes the eggs and females of plant-parasitic nematodes (PPN). The fungus-nematode interaction involves a complex series of events which can be affected by the environment. Thus, an understanding of the bionomics of this interaction is essential in order to improve the efficiency of the biological management of PPN. In this chapter, we provide an overview of the process of infection of nematodes by Pochonia and the role of the environment on the fungus-nematode interaction. Firstly, we focus on the events and the mechanisms underlying adhesion, penetration and colonisation of nematodes by Pochonia. We discuss how the infection process is driven by both mechanical forces, induced by the appressoria, and enzymatic activity, specifically by the serine proteases (P32, VCP1, SCP1) and chitinases. Environmental factors have a profound influence on the Pochonia-nematode interaction and these are discussed in detail. Temperature, pH, soil type, soil microbiota and roots can enhance or reduce the parasitism of the nematode by the fungal antagonist. Finally, we discuss how the method of application of Pochonia and its timing can impact on the establishment of the fungus in the soil and, consequently, on the control of nematodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alves PS. (2016). Compatibilidade entre Pochonia chlamydosporia e Trichoderma spp. no controle de Meloidogyne javanica em tomateiro. MSc dissertation, Universidade Federal de Viçosa, MG, Brazil.

    Google Scholar 

  • Aro, N., Pakula, T., & Penttila, M. (2005). Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS Microbiology Reviews, 29, 719–739.

    Article  CAS  PubMed  Google Scholar 

  • Arora, D. K., Hirsch, P. R., & Kerry, B. R. (1996). PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycological Research, 100, 801–809.

    Article  CAS  Google Scholar 

  • Batista, A. C., & Fonseca, O. M. (1965). Pochonia humicola n. gen. e n. sp., uma curiosa entidade fúngica dos solos do Nordeste do Brasil. Public Institute of Micological Recife, 462, 1–11.

    Google Scholar 

  • Bird, A. F., & Bird, J. (1991). The structure of nematodes. San Diego: Academic Press.

    Google Scholar 

  • Bird, A. F., & McClure, M. A. (1976). The tylenchid (Nematoda) egg shell: structure, composition and permeability. Parasitology, 72, 19–28.

    Article  Google Scholar 

  • Bordallo, J. J., Lopez-Llorca, L. V., Jansson, H.-B., et al. (2002). Colonization of plant roots by egg-parasitic and nematode-trapping fungi. The New Phytologist, 154, 491–499.

    Article  Google Scholar 

  • Bourne, J. M., & Kerry, B. R. (1999). Effect of the host plant on the efficacy of Verticillium chlamydosporium as a biological control agent of root-knot nematodes at different nematode densities and fungal application rates. Soil Biology and Biochemistry, 31, 75–84.

    Article  CAS  Google Scholar 

  • Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.

    Article  Google Scholar 

  • Brakhage, A. A. (2013). Regulation of fungal secondary metabolism. Nature Reviews Microbiology, 11, 21–32.

    Article  CAS  PubMed  Google Scholar 

  • Ceiro, W. G., Arévalo, J., Puertas, A. N., et al. (2014). Efecto de concentraciones de NaCl sobre el crecimiento micelial y la esporulación de Pochonia chlamydosporia (Goddard) Zare y Gams en medio PDA y suelo. Revista de Protección Vegetal, 29, 122–127.

    Google Scholar 

  • Chan, Y. L., Cai, D., Taylor, P. W. J., et al. (2010). Adverse effect of the chitinolytic enzyme PjCHI-1 in transgenic tomato on egg mass production and embryonic development of Meloidogyne incognita. Plant Pathology, 59, 922–930.

    Article  CAS  Google Scholar 

  • Clarke, A. J., Cox, P. M., & Shepherd, A. M. (1967). The chemical composition of the egg shells of the potato cyst-nematode, Heterodera rostochiensis Woll. The Biochemical Journal, 104, 1056–1060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cook, R. J., & Baker, K. F. (1983). Why biological control? In R. J. Cook & K. F. Baker (Eds.), The nature and practice of biological control of plant pathogens (pp. 1–29). St. Paul: American Phytopathological Society.

    Google Scholar 

  • Dallemole-Giaretta, R., Freitas, L. G., Lopes, E. A., et al. (2015). Pochonia chlamydosporia promotes the growth of tomato and lettuce plants. Acta Scientiarum Agronomy, 37, 417–423.

    Article  Google Scholar 

  • Di Cera, E. (2009). Serine proteases. International Union Biochemical Molecular Biological Life, (5), 510–515.

    Google Scholar 

  • Dos Santos, V. C., Curtis, R. H. C., & Abrantes, I. (2014). The combined use of Pochonia chlamydosporia and plant defense activators – a potential sustainable control strategy for Meloidogyne chitwoodi. Phytopathologia Mediterranea, 1, 66–74.

    Google Scholar 

  • Escudero, N., & Lopez-Llorca, N. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.

    Article  Google Scholar 

  • Escudero, N., Marhuenda-Egea, F. C., Ibanco-Cañete, R., et al. (2014). A metabolomic approach to study the rhizodeposition in the tritrophic interaction: Tomato, Pochonia chlamydosporia and Meloidogyne javanica. Metabolomics, 10, 788–804.

    Article  CAS  Google Scholar 

  • Escudero, N., Ferreira, S. R., & Lopez-Moya, F. (2016). Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biology, 120, 572–585.

    Article  CAS  PubMed  Google Scholar 

  • Esteves, I., Peteira, B., Atkins, S. D., et al. (2009). Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 113, 867–876.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira, P. A., Ferraz, S., Lopes, E. A., et al. (2008). Parasitismo de ovos de Meloidogyne exigua por fungos nematófagos e estudo da compatibilidade entre os isolados fúngicos. Revista Trópica: Ciencias Agrárias e Biológicas, 3, 15–21.

    Google Scholar 

  • Gayad, S. K. (1961). Production of symptoms of barley leaf spot disease by cultural filtrates of Helminthosporium sativum. Nature, 191, 725–726.

    Article  Google Scholar 

  • Hellwig, V., Mayer-Bartschmid, A., Muller, H., et al. (2003). Pochonins A-F, new antiviral and anti-parasitic resorcylic acid lactones from Pochonia chlamydosporia var. catenulata. Journal of Natural Products, 66, 829–837.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Zhao, N., & Zhang, K. (2004). Extracellular enzymes serving as virulence factors in nematophagous fungi involved in infection of the host. Research in Microbiology, 155, 811–816.

    Article  CAS  PubMed  Google Scholar 

  • Huang, T.-C., Chang, H.-Y., Hsu, C.-H., et al. (2008). Targeting therapy for breast carcinoma by ATP synthase inhibitor Aurovertin B. Journal of Proteome Research, 7, 1433–1444.

    Article  CAS  PubMed  Google Scholar 

  • Irving, F., & Kerry, B. R. (1986). Variation between strains of the nematophagous fungus Verticillium chlamydosporium Goddard. Factors affecting parasitism of cyst nematode eggs. Nematologica, 32, 474–485.

    Article  Google Scholar 

  • Kepler, R. M., Humber, R. A., Bischoff, J. F., et al. (2014). Clarification of generic and species boundaries for Metarhizium and related fungi through multigene phylogenetics. Mycologia, 106, 811–829.

    Article  PubMed  Google Scholar 

  • Kerry, B. R. (2000). Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annual Review of Phytopathology, 38, 423–441.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, B. R., & Bourne, J. M. (1996). Importance of rhizosphere interactions in the biological control of plant parasitic nematodes: a case study using Verticillium chlamydosporium. Pesticide Science, 47, 69–75.

    Article  CAS  Google Scholar 

  • Kerry, B. R., Irving, F., & Hornsey, J. C. (1986). Variation between strains of the nematophagous fungus Verticillium chlamydosporium Goddard. Factors affecting growth in vitro. Nematologica, 32, 461–473.

    Article  Google Scholar 

  • Khambay, B. P. S., Bourne, J. M., Cameron, S., et al. (2000). A nematicidal metabolite from Verticillium chlamydosporium. Pest Management Science, 56, 1098–1099.

    Article  CAS  Google Scholar 

  • Khan, A., Williams, K. L., & Nevalainen, H. K. M. (2004). Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological Control, 31, 346–352.

    Article  CAS  Google Scholar 

  • Kumar, J., Schafer, P., Huckelhoven, R., et al. (2002). Bipolaris sorokiniana, a cereal pathogen of global concern: cytological and molecular approaches towards better control. Molecular Plant Pathology, 3, 185–195.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Martín-Nieto, J., & Lopez-Llorca, L. V. (2012). Gene cloning, molecular modeling, and phylogenetics of serine protease P32 and serine carboxypeptidase SCP1 from nematophagous fungi Pochonia rubescens and Pochonia chlamydosporia. Canadian Journal of Microbiology, 58, 815–827.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Nislow, C., et al. (2015). Endophytic colonization of barley (Hordeum vulgare) roots by the nematophagous fungus Pochonia chlamydosporia reveals plant growth promotion and a general defense and stress transcriptomic response. Journal of Plant Research, 128, 665–678.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Yu, L., Yang, J., et al. (2010). New insights into the evolution of subtilisin-like serine protease genes in Pezizomycotina. BMC Evolutionary Biology, 10, 1.

    Article  CAS  Google Scholar 

  • Liu, S. Q., Meng, Z. H., Yang, J. K., et al. (2007). Characterizing structural features of cuticle-degrading proteases from fungi by molecular modeling. BMC Structural Biology, 7, 1.

    Article  Google Scholar 

  • Lopez-Llorca, L. V. (1990). Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Canadian Journal of Microbiology, 36, 530–537.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L. V., & Boag, B. (1990). Inhibition of Verticillium suchlasporium and other nematophagous fungi by bacteria colonizing Heterodera avenae females. Nematologia Mediterranea, 18, 233–237.

    Google Scholar 

  • Lopez-Llorca, L. V., & Claugher, D. (1990). Appressoria of the nematophagous fungus Verticillium suchlasporium. Micron and Microscopica Acta, 21, 125–130.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Fry, S. C. (1988). Dityrosine, trityrosine and tetratyrosine, potential cross-links in structural proteins of plant-parasitic nematodes. Nematologica, 35, 165–179.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., & Robertson, W. M. (1992a). Immumocytochemical localization of a 32-kDa protease from the nematophagous fungus Verticillium suchlasporium in infected nematode eggs. Experimental Mycology, 16, 261–267.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L. V., & Robertson, W. M. (1992b). Ultrastructure of infection of cyst nematode eggs by the nematophagous fungus Verticillium suchlasporium. Nematologica, 39, 65–74.

    Article  Google Scholar 

  • Lopez-Llorca, L. V., Moya, M., & Llinares, A. (1993). Effect of pH on growth and pigment production of nematophagous and entomogenous fungi. Micologia e Vegetazione Mediterranea, 8, 107–112.

    Google Scholar 

  • Lopez-Llorca, L. V., Olivares-Bernabeu, C., Salinas, J., et al. (2002). Pre-penetration events in fungal parasitism of nematode eggs. Mycological Research, 106, 499–506.

    Article  CAS  Google Scholar 

  • Lopez-Llorca, L., Gómez-Vidal, S., Monfort, E., et al. (2010). Expression of serine proteases in egg-parasitic nematophagous fungi during barley root colonization. Fungal Genetics and Biology, 47, 342–351.

    Article  CAS  PubMed  Google Scholar 

  • Luambano, N. D., Manzanilla-López, R. H., Kimenju, J. W., et al. (2015). Effect of temperature, pH, carbon and nitrogen ratios on the parasitic activity of Pochonia chlamydosporia on Meloidogyne incognita. Biological Control, 80, 23–29.

    Article  CAS  Google Scholar 

  • Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009a). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2009b). Rapid and reliable DNA extraction and PCR fingerprinting methods to discriminate multiple biotypes of the nematophagous fungus Pochonia chlamydosporia isolated from plant rhizospheres. Letters in Applied Microbiology, 48, 71–76.

    Article  PubMed  Google Scholar 

  • Manzanilla-López, R. H., Esteves, I., Powers, S. J., et al. (2011). Effects of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. Annals of Applied Biology, 159, 118–129.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Esteves, I., Finetti-Sialer, M. M., et al. (2013). Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. Journal of Nematology, 45, 1–7.

    PubMed  PubMed Central  Google Scholar 

  • Manzanilla-López, R. H., Devonshire, J., Ward, E., et al. (2014). A combined cryo-scanning electron microscopy/cryoplaning approach to study the infection of Meloidogyne incognita eggs by Pochonia chlamydosporia. Nematology, 16, 1059–1067.

    Article  Google Scholar 

  • Medeiros, H. A., Resende, R. S., Ferreira, F. C., et al. (2015). Induction of resistance in tomato against Meloidogyne javanica by Pochonia chlamydosporia. Nematoda, 2, 10015–10022.

    Google Scholar 

  • Mi, Q., Yang, J., Ye, F., et al. (2010). Cloning and over expression of Pochonia chlamydosporia chitinase gene pcchi44, a potential virulence factor in infecting against nematodes. Process Biochemistry, 45, 810–814.

    Article  CAS  Google Scholar 

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaemannomyces graminis var. tritici & development of root-rot. Soil Biology and Biochemistry, 37, 1229–1235.

    Article  CAS  Google Scholar 

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2006). In vitro soil receptivity assays to egg parasitic nematophagous fungi. Mycological Progress, 5, 18–23.

    Article  Google Scholar 

  • Monteiro TSA. (2013). Controle biológico do nematoide das galhas, Meloidogyne javanica, e promoção de crescimento vegetal com os fungos Pochonia chlamydosporia e Duddingtonia flagrans. MSc Dissertation, Universidade Federal de Viçosa, MG, Brazil.

    Google Scholar 

  • Morgan-Jones, G., White, J. F., & Rodriguez-Kabana, R. (1983). Phytonematode pathology: ultrastructural studies. I. Parasitism of Meloidogyne arenaria eggs by Verticillium chlamydosporium. Nematropica, 13, 245–260.

    Google Scholar 

  • Morton, C. O., Hirsch, P. R., Peberdy, J. P., et al. (2003). Cloning of and genetic variation in protease VCP1 from the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Morton, C. O., Hirsch, P. R., & Kerry, B. R. (2004). Infection of plant-parasitic nematodes by nematophagous fungi – review of the application of molecular biology to understand infection process and to improve biological control. Nematology, 6, 161–170.

    Article  CAS  Google Scholar 

  • Moulin, E., Barluenga, S., & Winssinger, N. (2005). Concise synthesis of Pochonin A, an HSP90 inhibitor. Organic Letters, 25, 5637–5639.

    Article  Google Scholar 

  • Nagesh, M., Hussaini, S. S., Ramanujam, B., et al. (2007). Molecular identification, characterization, variability and infectivity of Indian isolates of the nematophagous fungus Pochonia chlamydosporia. Nematologia Mediterranea, 35, 47–56.

    Google Scholar 

  • Nahar, P., Ghormade, V., & Deshpande, M. V. (2004). The extracellular constitutive production of chitin deacetylase in Metarhizium anisopliae: possible edge to entomopathogenic fungi in the biological control of insect pests. Journal of Invertebrate Pathology, 85, 80–88.

    Article  CAS  PubMed  Google Scholar 

  • Nasu EGC. (2013). Tratamento de sementes de soja e algodão com Pochonia chlamydosporia no controle de Meloidogyne incognita e histopatologia da inteiração tritrófica. Doctoral thesis, Universidade Federal de Viçosa, MG, Brazil.

    Google Scholar 

  • Nicholson, R. L., & Moraes, W. B. C. (1980). Survival of Colletotrichum graminicola: importance of the spore matrix. Phytopathology, 70, 255–261.

    Article  CAS  Google Scholar 

  • Niu, X., Wang, Y., Chu, Y., et al. (2010). Nematode toxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Food Agricultural Chemistry, 58, 828–834.

    Article  CAS  Google Scholar 

  • Olivares-Bernabeu, C. M., & Lopez-Llorca, L. V. (2002). Fungal egg-parasites of plant- parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.

    Google Scholar 

  • Palma-Guerrero, J., Jansson, H-B., Salinas, J., et al. (2008). Effect of chitosan on hyphal growth and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology 104, 541–553.

    Google Scholar 

  • Palma-Guerrero, J., Gómez-Vidal, S., Tikhonov V. E., et al. (2010). Comparative analysis of extracellular proteins from Pochonia chlamydosporia grown with chitosan or chitin as main carbon and nitrogen sources. Enzyme and Microbial Technology, 46, 568–574.

    Google Scholar 

  • Perry, R. N., & Trett, M. W. (1986). Ultrastructure of the egg shell of Heterodera schachtii and H. glycines (Nematoda: Tylenchida). Revue de Nématologie, 9, 399–403.

    Google Scholar 

  • Perry, R. N., & Wharton, D. A. (2011). Survival of parasitic nematodes outside the host. In R. N. Perry & M. Moens (Eds.), Molecular and physiological basis of nematode survival (pp. 1–22). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Podestá GS. (2010). Aplicação de Pochonia chlamydosporia em pré-plantio para potencializar o controle de Meloidogyne javanica em tomate e alface. MSc dissertation, Universidade Federal de Viçosa, MG, Brazil.

    Google Scholar 

  • Podestá, G. S., Dallemole-Giaretta, R., Freitas, L. G., et al. (2009). Atividade nematófaga de Pochonia chlamydosporia em solo natural ou autoclavado sobre Meloidogyne javanica. Nematologia Brasileira, 32, 191–193.

    Google Scholar 

  • Segers, R., Butt, T., Kerry, B. R., et al. (1994). The nematophagous fungus Verticillium chlamydosporium produces a chymoeslastase-like protease which hydrolyses host nematode proteins in situ. Microbiology, 140, 2715–2723.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R., Butt, T. M., Kerry, B. R., et al. (1995). The subtilisins of the invertebrate mycopathogens Verticillium chlamydosporium and Metarhizium anisopliae are functionally and serologically related. FEMS Microbiology Letters, 126, 227–231.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R., Butt, T. M., Kerry, B. R., et al. (1996). The role of the proteinase VCPI produced by the nematophagous fungus Verticillium chlamydosporium in the infection process of nematode eggs. Mycological Research, 100, 421–428.

    Article  CAS  Google Scholar 

  • Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J., et al. (2002). Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genetics and Biology, 35, 67–78.

    Article  CAS  PubMed  Google Scholar 

  • Tucker, S. L., & Talbot, N. J. (2001). Surface attachment and pre-penetration stage development by plant pathogenic fungi. Annual Review of Phytopathology, 39, 385–417.

    Article  CAS  PubMed  Google Scholar 

  • Verdejo-Lucas, S., Sorribas, F. J., Ornat, C., et al. (2003). Evaluating Pochonia chlamydosporia in a double-cropping system of lettuce and tomato in plastic houses infested with Meloidogyne javanica. Plant Pathology, 52, 521–528.

    Article  Google Scholar 

  • Wang, E. L. H., & Bergeson, G. B. (1974). Biochemical changes in root exudate and xylem sap of tomato plants infected with Meloidogyne incognita. Journal of Nematology, 6, 194–202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. L., Li, L. F., Li, D. X., et al. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.

    Article  CAS  PubMed  Google Scholar 

  • Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: implications for nematode biocontrol. PloS One, 7, e35657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wharton, D. A. (2011). Cold tolerance. In R. N. Perry & D. A. Wharton (Eds.), Molecular and physiological basis of nematode survival (pp. 182–204). Wallingford: CAB International.

    Chapter  Google Scholar 

  • Yang, J., Tian, B., Liang, L., et al. (2007). Extracellular enzymes and the pathogenesis of nematophagous fungi. Applied Microbiology and Biotechnology, 75, 21–31.

    Article  CAS  PubMed  Google Scholar 

  • Yen, J.-H., Niblack, T. L., Karr, A. L., et al. (1996). Seasonal biochemical changes in eggs of Heterodera glycines in Missouri. Journal of Nematology, 28, 442–450.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zare, R., Gams, W., & Culham, A. (2000). A revision of Verticillium sect. Prostrata I. Phylogenetic studies using ITS sequences. Nova Hedwigia, 71, 465–480.

    Google Scholar 

  • Zare, R., Gams, W., & Evans, H. C. (2001). A revision of Verticillium section Prostrata. V. The genus Pochonia, with notes on Rotiferophthora. Nova Hedwigia, 73, 51–86.

    Google Scholar 

  • Zavala-Gonzalez, E. A., Escudero, N., Lopez-Moya, F., et al. (2015). Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. The Annals of Applied Biology, 166, 472–483.

    Article  CAS  Google Scholar 

  • Zou, C.-S., Mo, M.-H., Y-Q, G., et al. (2007). Possible contributions of volatile-producing bacteria to soil fungistasis. Soil Biology and Biochemistry, 39, 2371–2379.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Grassi de Freitas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Avelar Monteiro, T.S., Lopes, E.A., Evans, H.C., Grassi de Freitas, L. (2017). Interactions Between Pochonia chlamydosporia and Nematodes. In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_4

Download citation

Publish with us

Policies and ethics