Skip to main content

Abstract

Research on Pochonia chlamydosporia biology, diversity and ecology, especially multitrophic interactions, has improved our knowledge of the fungus. This has been applied to enhance the effectiveness of fungal strains and develop Pochonia-compatible Integrated Pest Management strategies. Several Pochonia-based commercial bionematicides are currently available in the biopesticide market. However, control success and adoption of the current P. chlamydosporia-based products relies upon sustainable production, proper use and maintenance of isolates/strains, as well as the development of more efficient formulations and application methods. This chapter highlights some of the requirements that are necessary to enhance our understanding of those mechanisms that underpin the potential of the fungus in controlling nematodes and enhancing crop performance. Furthermore, exploration of P. chlamydosporia multitrophic phases could pave the way to identify new applications, a good example being the use of P. chlamydosporia secondary metabolites in human and veterinary medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agrow Agribusiness Intelligence. (2016). Biologicals 2016 (an analysis of corporate, products and regulatory news in 2015/2016). https://www.agra-net.com/agra/agrow/supplements-reports/supplements/article518033.ece/BINARY/Agrow_Biopesticide_2016-supplement.pdf. pp 14, 17–19.

  • Arazoe, T., Miyoshi, K., Yamato, T., et al. (2015). Tailor-made CRISPR/Cas system for highly efficient targeted gene replacement in the rice blast fungus. Biotechnology and Bioengineering, 112, 2543–2549. doi:10.1002/bit.25662.

    Article  CAS  PubMed  Google Scholar 

  • Barbosa, P. (1998). Agroecosystems and conservation biological control. In P. Barbosa (Ed.), Conservative biological control (pp. 39–54). San Diego: Academic.

    Chapter  Google Scholar 

  • Bigler, F., Looman, S. A., & van Lenteren, J. (2005). Harmonization of the regulation of invertebrate biological control agents in Europe. Second international symposium on biological control of arthropods. Davos, Switzerland, pp. 692–700.

    Google Scholar 

  • Bontempo, A. F., Fernandes, R. H., Lopes, J., et al. (2014). Pochonia chlamydosporia controls Meloidogyne incognita on carrot. Australasian Plant Pathology, 43, 421–424.

    Article  Google Scholar 

  • Chen, S. Y., & Chen, F. J. (2003). Fungal parasitism of Heterodera glycines eggs as influenced by egg age and pre-colonization of cysts by other fungi. Journal of Nematology, 35, 271–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen, S., & Dickson, D. W. (2012). Biological control. In R. H. Manzanilla-López & N. Marbán-Mendoza (Eds.), Practical plant nematology (pp. 761–811). Mexico: BBA Biblioteca básica de agricultura, Editorial del Colegio de Postgraduados.

    Google Scholar 

  • Cherry, A. (2006). Crop protection programme. Development of biopesticide registration and risk assessment guidelines for Ghana. R8430 (ZA 0659). Final technical report. http://www.fao.org/docs/eims/upload/agrotech/2003/r8430_ftr.pdf

  • Conrath, U., Beckers, G. J. M., Caspar, J. G., et al. (2015). Priming for enhanced defense. Annual Review of Phytopathology, 53, 97–119.

    Article  CAS  PubMed  Google Scholar 

  • Crump, D. H., & Kerry, B. R. (1987). Studies on the population dynamics and fungal parasitism of Heterodera schachtii in soil from a sugar beet monoculture. Crop Protection, 6, 49–55.

    Article  Google Scholar 

  • Escudero, N., & Lopez-Llorca, L. V. (2012). Effects of plant growth and root-knot nematode infection of an endophytic GFP transformant on the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.

    Article  Google Scholar 

  • Finetti-Sialer, M. M., & Manzanilla-López, R. H. (2011). Exploiting “-omics” and molecular approaches in plant nematology research. In R. Rodríguez-Herrera, C. N. Aguilar, J. K. Simpson-Williamson, et al. (Eds.), Phytopathology in the omics era, Transworld research network (pp. 39–68). Thiruvananthapuram: Research Signpost.

    Google Scholar 

  • Gowen, S. R. (2002). Integrated management of root-knot nematodes on vegetables in Kenya R 7472 (Za 0324). Final technical report (1 October 1999–30 September 2002). Reading, UK, 52 pp. DFID R7472 Crop Protection Programme.

    Google Scholar 

  • Gowen, S. R. (2005). Promotion of sustainable approaches for the management of root-knot nematodes of vegetables in Kenya (R8296 (ZA 0568)). Crop protection programme. Final Report, DFID, 39 pp.

    Google Scholar 

  • Kerry, B. R. (1991). Methods for studying the growth and survival of the nematophagous fungus, Verticillium chlamydosporium Goddard, in soil. IOBC/WPRS Bulletin, 14, 34–38.

    Google Scholar 

  • Kerry, B. R. (1997). Biological control of nematodes: Prospects and opportunities. FAO Corporate Document Repository. Plant nematode problems and their control in the Near East Region. FAO Plant Production and Protection Paper, 144.

    Google Scholar 

  • Klosterman, S. J., Rollins, J. R., Sudarshana, M. R., & Vinatzer, B. A. (2016). Disease management in the genomics era–Summaries of focus issue papers. Phytopathology, 106, 1068–1070.

    Article  CAS  PubMed  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Maciá-Vicente, J. G., Jansson, H., Mendgen, K., et al. (2008). Colonization of barley roots by endophytic fungi and their reduction of take-all caused by Gaeumannomyces graminis var. tritici. Canadian Journal of Microbiology, 54, 600–609.

    Article  PubMed  Google Scholar 

  • Manzanilla-López, R. H., Esteves, I., Powers, S. J., et al. (2011). Effect of crop plants on abundance of Pochonia chlamydosporia and other fungal parasites of root-knot and potato cyst nematodes. The Annals of Applied Biology, 159, 118–129.

    Article  Google Scholar 

  • Markets and Markets. (2016). Biopesticides market by type (bioinsecticides, biofungicides, bioherbicides, and bionematicides), origin (beneficial insects, microbials, plant-incorporated protectants, and biochemicals), mode of application, formulation, & crop type – Global Forecast to 2022. November 2016. Report Code: AGI 2716. http://www.marketsandmarkets.com/Market-Reports/biopesticides-267.html

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H.-B., et al. (2005). Colonisation of seminal roots of wheat and barley by egg-parasitic nematophagous fungi and their effects on Gaeumannomyces graminis var. tritici and development of root-rot. Soil Biology and Biochemistry, 37, 129–1235.

    Article  Google Scholar 

  • Monfort, E., Lopez-Llorca, L. V., Jansson, H. B., et al. (2006). In vitro soil receptivity assays to egg parasitic nematophagous fungi. Mycological Progress, 5, 18–23.

    Google Scholar 

  • Montes de Oca, N., Arévalos, J., Nuñez, A., et al. (2009). Klamic: Experiencia técnica-productiva. Revista de Protección Vegetal, 24, 62–65.

    Google Scholar 

  • Naranjo, S. E., Ellsworth, P. C., & Frisvold, G. B. (2015). Economic value of biological control in integrated pest management of managed plant systems. Annual Review of Entomology, 60, 621–645.

    Article  CAS  PubMed  Google Scholar 

  • Nyaku, S. T., Sripathi, V. R., Kantety, R. V., et al. (2014). Characterization of the reniform nematode genome by shotgun sequencing. Genome, 57, 209–221.

    Article  CAS  PubMed  Google Scholar 

  • OSU Oregon State University. (2012). Integrated plant protection center. IPMnet News, 192 January 2012, issue no. 192. http://www.ipmnet.org/IPMNews/2012/news192.html

  • Robinson, A. F. (2007). Reniform in U.S. Cotton: When, where, why, and some remedies. Annual Review of Phytopathology, 45, 263–288.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Moreno, S., Nicola, N. L., Ferris, H., et al. (2009). Effects of agricultural management on nematode–mite assemblages: Soil food web indices as predictors of mite community composition. Applied Soil Ecology, 41, 107–117.

    Article  Google Scholar 

  • Sellitto, V. M., Curto, G., Dallavalle, E., et al. (2016). Effect of Pochonia chlamydosporia-based formulates on the regulation of root-knot nematodes and plant growth response. Frontiers in Life Science. https://doi.org/10.1080/21553769.2016.1193827.

  • Shorest, M., Gal-On, A., Leibamn, D., et al. (2006). Characterization of a mitogen-activated protein kinase gene from cucumber required for Trichoderma-conferred plant resistance. Plant Physiology, 142, 1169–1179.

    Article  Google Scholar 

  • Stirling, G. R. (1991). Biological control of plant parasitic nematodes: Progress, problems and prospects. Wallingford: CABI Publishing.

    Google Scholar 

  • Stirling, G. R. (2014). Biological control of plant-parasitic nematodes: Soil ecosystem management in sustainable agriculture (2nd ed.). Croydon: CABI.

    Book  Google Scholar 

  • Sundin, G. W., Wang, N., Charkowski, A. O., et al. (2016). Perspectives on the transition from bacterial phytopathogen genomics studies to applications enhancing disease management: From promise to practice. Phytopathology Perspectives, 106, 1071–1082.

    Article  Google Scholar 

  • Timper, P. (2014). Conserving and enhancing biological control of nematodes. Journal of Nematology, 46, 75–89.

    PubMed  PubMed Central  Google Scholar 

  • Tunlid, A., & Talbot, N. J. (2002). Genomics of parasitic and symbiotic fungi. Current Opinion in Microbiology, 5, 513–519.

    Article  CAS  PubMed  Google Scholar 

  • Wabule, M. N., Ngaruiga, P. N., Kimmins, F. K. et al. (2004). Registration for biological control agents in Kenya. Proceedings of the pest control products Board/Kenya/Agricultural Research Institute/Department for international development crop protection programme workshop, Nakuru, Kenya, 14–16 May 2003. KARI/PCPB, Nairobi, Kenya, and Natural Resources International Ltd., Aylesford, UK.

    Google Scholar 

  • Westermann, A. J., Gorski, S. A., & Vogel, J. (2012). Dual RNA-seq of pathogen and host. Nature Reviews Microbiology, 10, 618–630. http://dx.doi.org/10.1038/nrmicro2852.

    Article  CAS  PubMed  Google Scholar 

  • Zavala-Gonzalez, E. A., Escudero, N., Lopez-Moya, F., et al. (2015). Some isolates of the nematophagous fungus Pochonia chlamydosporia promote root growth and reduce flowering time of tomato. The Annals of Applied Biology, 166, 472–483.

    Article  CAS  Google Scholar 

  • Zavala-Gonzalez, E. A., Rodríguez-Cazorla, E., Escudero, N., et al. (2017). Arabidopsis thaliana root colonization by the nematophagous fungus Pochonia chlamydosporia is modulated by jasmonate signalling and leads to accelerated flowering and improved yield. The New Phytologist, 213, 351–364.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa H. Manzanilla-López .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Manzanilla-López, R.H., Lopez-Llorca, L.V. (2017). Future Perspectives. In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_18

Download citation

Publish with us

Policies and ethics