Skip to main content

Abstract

Molecular tools have been increasingly used in identification and taxonomy studies of Pochonia (Clavicipitaceae). In recent years there have been important advances in Clavicipitaceae taxonomy, including resolving the differences between Verticillium and Pochonia through ITS sequences molecular analysis. Current molecular identification of Pochonia spp. relies on different sets of molecular markers to differentiate species, varieties, and host-preference biotypes. The diversity of Pochonia spp. populations has been studied through several genomic fingerprinting techniques, such as RAPD, SCAR, ERIC and REP. Quantification of the fungus in soil and roots can be made using quantitative PCR in combination with other classic microbiological techniques. It is well known that the genus is complex and the current classification is mainly based on the phylogenetic analysis of several genes such as β-tubulin, ITS, nrSSU, nrLSU, rpb1, rpb2 and EF1-α. Molecular advances and recent genome sequencing of Pochonia chlamydosporia has opened a new era in the study of this important fungus, thus broadening the possibilities for studying the molecular mechanisms of differentiation, pathogenesis and diagnostics within Pochonia spp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson, I. C., & Cairney, J. W. G. (2004). Diversity and ecology of soil fungal communities: Increased understanding through the application of molecular techniques. Environmental Microbiology, 6, 769–779.

    Article  CAS  PubMed  Google Scholar 

  • Arnedo-Andrés, M., Gil-Ortega, R., Luis-Arteaga, M., et al. (2002). Development of RAPD and SCAR markers linked to the Pvr4 locus for resistance to PVY in pepper (Capsicum annuum L.) Theoretical and Applied Genetics, 105, 1067–1074.

    Article  PubMed  Google Scholar 

  • Arora, D. K., Hirsch, P. R., & Kerry, B. R. (1996). PCR-based molecular discrimination of Verticillium chlamydosporium isolates. Mycological Research, 100, 801–809.

    Article  CAS  Google Scholar 

  • Atkins, S. D., Hidalgo-Díaz, L., Clark, I. M., et al. (2003). Approaches for monitoring the release of Pochonia chlamydosporia var. catenulata, a biocontrol agent of root-knot nematodes. Mycological Research, 107, 206–212.

    Google Scholar 

  • Atkins, S. D., Peteira, B., Clark, I. M., et al. (2009). Use of real-time quantitative PCR to investigate root and gall colonisation by co-inoculated isolates of the nematophagous fungus Pochonia chlamydosporia. The Annals of Applied Biology, 155, 143–152.

    Article  CAS  Google Scholar 

  • Bidochka, M. J., Kamp, A. M., Lavender, T. M., et al. (2001). Habitat association in two genetic groups of the insect-pathogenic fungus Metarhizium anisopliae: Uncovering cryptic species? Applied and Environmental Microbiology, 67, 1335–1342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bird, A. F., & McClure, M. A. (1976). The tylenchid (Nematoda) egg shell: Structure, composition and permeability. Parasitology, 72, 19–28.

    Article  Google Scholar 

  • Bischoff, J. F., Rehner, S. A., & Humber, R. A. (2006). Metarhizium frigidum sp. nov.: A cryptic species of M. anisopliae and a member of the M. flavoviride complex. Mycologia, 98, 737–745.

    Article  CAS  PubMed  Google Scholar 

  • Bourne, J. M., Kerry, B. R., & De Leij, F. A. A. M. (1996). The importance of the host plant on the interaction between root-knot nematodes (Meloidogyne spp.) and the nematophagous fungus, Verticillium chlamydosporium Goddard. Biocontrol Science and Technology, 6, 539–548.

    Article  Google Scholar 

  • Bridge, P., & Spooner, B. (2001). Soil fungi: Diversity and detection. Plant and Soil, 232, 147–154.

    Article  CAS  Google Scholar 

  • Ciancio, A., Loffredo, A., Paradies, F., et al. (2005). Detection of Meloidogyne incognita and Pochonia chlamydosporia by fluorogenic molecular probes. EPPO Bulletin, 35, 157–164.

    Article  Google Scholar 

  • Eriksson, O. E., & Hawksworth, D. L. (1985). Outline of the ascomycetes. Systema Ascomycetum, 4, 1–79.

    Google Scholar 

  • Escudero, N., & Lopez-Llorca, L. V. (2012). Effects on plant growth and root-knot nematode infection of an endophytic GFP transformant of the nematophagous fungus Pochonia chlamydosporia. Symbiosis, 57, 33–42.

    Article  Google Scholar 

  • Esteves, I., Peteira, B., Atkins, S., et al. (2009). Production of extracellular enzymes by different isolates of Pochonia chlamydosporia. Mycological Research, 113, 867–876.

    Article  CAS  PubMed  Google Scholar 

  • Feng, M. G., Poprawski, T. J., & Khachatourians, G. G. (1994). Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: Current status. Biocontrol Science and Technology, 4, 3–34.

    Article  Google Scholar 

  • Feng, X. M., Holmberg, A. I. J., Sundh, I., et al. (2011). Specific SCAR markers and multiplex real-time PCR for quantification of two Trichoderma biocontrol strains in environmental samples. BioControl, 56, 903–913.

    Article  CAS  Google Scholar 

  • Flores-Camacho, R., Atkins, S. D., Manzanilla-López, R. H., et al. (2008). Characterization of Mexican isolates of Pochonia chlamydosporia var. chlamydosporia (Goddard) Gams and Zare for biological control of Nacobbus aberrans (Thorne) Thorne and Allen. Revista Mexicana de Fitopatología, 26, 93–104.

    Google Scholar 

  • Gams, W. (1988). A contribution to the knowledge of nematophagous species of Verticillium. Netherlands Journal of Plant Pathology, 94, 123–148.

    Article  Google Scholar 

  • Gams, W., & Zare, R. (2001). A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia, 72, 329–337.

    Google Scholar 

  • Gäumann E. (1926). Vergleichende Morphologie der pilze publisher in Fisher, Jena.

    Google Scholar 

  • Giné, A., Carrasquilla, M., Martínez-Alonso, M., et al. (2016). Characterization of soil suppressiveness to root-knot nematodes in organic horticulture in plastic greenhouse. Frontiers in Plant Science. doi:10.3389/fpls.2016.00164.

  • Glenn, A. E., Bacon, C. W., Price, R., et al. (1996). Molecular phylogeny of Acremonium and its taxonomic implicatioins. Mycologia, 88, 369–383.

    Article  CAS  Google Scholar 

  • Haarmann, T., Rolke, Y., Giesbert, S., et al. (2009). Ergot: From witchcraft to biotechnology. Molecular Plant Pathology, 10, 563–577.

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo-Diaz, L., Bourne, J. M., Kerry, B. R., et al. (2000). Nematophagous Verticillium spp. in soils infested with Meloidogyne spp. in Cuba: Isolation and screening. International Journal of Pest Management, 46, 277–284.

    Article  Google Scholar 

  • Hirsch, P. R., Mauchline, T. H., Mendum, T. A., et al. (2000). Detection of the nematophagous fungus Verticillium chlamydosporium in nematode-infested plant roots using PCR. Mycological Research, 104, 435–439.

    Article  CAS  Google Scholar 

  • Hirsch, P. R., Atkins, S. D., Mauchline, T. H., et al. (2001). Methods for studying the nematophagous fungus Verticillium chlamydosporium in the root environment. Plant and Soil, 232, 21–30.

    Article  CAS  Google Scholar 

  • Hung, C. Y., Seshan, K. R., Yu, J. J., et al. (2005). A metalloproteinase of Coccidioides posadasii contributes to evasion of host detection. Infection and Immunity, 73, 6689–6703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, Y., McAdams, S. A., Bryan, G. T., et al. (2000). Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. The EMBO Journal, 19, 4004–4014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joaquim, T. R., & Rowe, R. C. (1990). Reassessment of vegetative compatibility relationships among strains of Verticillium dahliae using nitrate-nonutilizing mutants. Phytopathology, 80, 1160–1166.

    Article  Google Scholar 

  • Kanzok, S. M., & Jacobs-Lorena, M. (2006). Entomopathogenic fungi as biological insecticides to control malaria. Trends in Parasitology, 22, 49–51.

    Article  PubMed  Google Scholar 

  • Kepler, R. M., Sung, G. H., Harada, Y., et al. (2012). Host jumping onto close relatives and across kingdoms by Tyrannicordyceps (Clavicipitaceae) gen. nov. and Ustilaginoidea (Clavicipitaceae). American Journal of Botany, 99, 552–561.

    Article  CAS  PubMed  Google Scholar 

  • Kerry, B. R., Atkins, S., & Rovira, D. A. (1984). Observations on the introduction of Verticillium chlamydosporium and other parasitic fungi into soil for control of the cereal cyst-nematode Heterodera avenae. The Annals of Applied Biology, 105, 509–516.

    Article  Google Scholar 

  • Kerry, B. R., & Hirsch, P. R. (2011). Ecology of Pochonia chlamydosporia in the rhizosphere at the population, whole organism and molecular scales. In K. Davies & Y. Spiegel (Eds.), Biological control of plant-parasitic nematodes (pp. 171–182). Netherlands: Springer.

    Chapter  Google Scholar 

  • Klimyuk, V. I., Carroll, B. J., Thomas, C. M., et al. (1993). Alkali treatment for rapid preparation of plant material for reliable PCR analysis. The Plant Journal, 3, 493–494.

    Article  CAS  PubMed  Google Scholar 

  • Koveza, O. V., Kokaeva, Z. G., Gostimsky, S. A., et al. (2001). Creation of a SCAR marker in pea (Pisum sativum L.) using RAPD analysis. Russian Journal of Genetics, 37, 464–466.

    Article  CAS  Google Scholar 

  • Larriba, E., Jaime, M. D. L. A., Carbonell-Caballero, J., et al. (2014). Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genetics and Biology, 65, 69–80.

    Article  CAS  PubMed  Google Scholar 

  • Lin, R., Liu, C., Shen, B., et al. (2015). Analysis of the complete mitochondrial genome of Pochonia chlamydosporia suggests a close relationship to the invertebrate-pathogenic fungi in Hypocreales. BMC Microbiology, 15, 15(1).

    Google Scholar 

  • Manzanilla-López, R. H., Atkins, S. D., Clark, I. M., et al. (2009a). Measuring abundance, diversity and parasitic ability in two populations of the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia. Biocontrol Science and Technology, 19, 391–406.

    Article  Google Scholar 

  • Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2009b). Rapid and reliable DNA extraction and PCR fingerprinting methods to discriminate multiple biotypes of the nematophagous fungus Pochonia chlamydosporia isolated from plant rhizospheres. Letters in Applied Microbiology, 48, 71–76.

    Article  PubMed  Google Scholar 

  • Manzanilla-López, R. H., Clark, I. M., Atkins, S. D., et al. (2011). Exploring competitiveness and variation in the nematophagous fungus Pochonia chlamydosporia var. chlamydosporia and its significance for biological control. Bulletin OILB/SROP, 63, 37–40.

    Google Scholar 

  • Manzanilla-López, R. H., Esteves, I., Finetti-Sialer, M. M., et al. (2013). Pochonia chlamydosporia: Advances and challenges to improve its performance as a biological control agent of sedentary endo-parasitic nematodes. Journal of Nematology, 45, 1–7.

    PubMed  PubMed Central  Google Scholar 

  • Mauchline, T. H., Kerry, B. R., & Hirsch, P. R. (2002). Quantification in soil and the rhizosphere of the nematophagous fungus Verticillium chlamydosporium by competitive PCR and comparison with selective plating. Applied and Environmental Microbiology, 68, 1846–1583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mauchline, T. M., Kerry, B. R., & Hirsch, P. R. (2004). The biocontrol fungus Pochonia chlamydosporia shows nematode host preference at the infraspecific level. Mycological Research, 108, 161–169.

    Article  PubMed  Google Scholar 

  • Medina-Canales, M. G., Rodríguez-Tovar, A. V., Manzanilla-López, R. H., et al. (2014). Identification and molecular characterisation of new Mexican isolates of Pochonia chlamydosporia for the management of Meloidogyne spp. Biocontrol Science and Technology, 24, 1–21.

    Article  Google Scholar 

  • Morton, A., Fabrett, A. M., Carder, J. H., et al. (1995). Sub-repeat sequences in ribosomal RNA intergenic regions of Verticillium albo-atrum and V. dahlie. Mycological Research, 99, 257–266.

    Article  CAS  Google Scholar 

  • Morton, C. O., Mauchline, T. H., Kerry, B. R., et al. (2003a). PCR-based DNA fingerprinting indicates host-related genetic variation in the nematophagous fungus Pochonia chlamydosporia. Mycological Research, 107, 198–205.

    Article  CAS  PubMed  Google Scholar 

  • Morton, C. O., Hirsch, P. R., Peberdy, J., et al. (2003b). Cloning of a genetic variation in protease VCP1 from the nematophagus fungus Pochonia chlamydosporia. Mycological Research, 107, 38–46.

    Article  CAS  PubMed  Google Scholar 

  • Muñoz-Saucedo LA, Tovar-Soto A, Rodríguez-Tovar AV et al. (2015). Phylogenetic analysis of native Mexican isolates of the nematophagous fungus Pochonia chlamydosporia. In: Abstracts of the XI Mexican congress of molecular and cell biology of fungi, Puebla, Mexico, October 25–29 2015.

    Google Scholar 

  • Muyzer, G., Brinkhoff, T., Nübel, U., et al. (2004). Denaturing gradient gel electrophoresis (DGGE) in microbial ecology. In G. A. Kowalchuk, F. J. de Bruijn, I. M. Head, et al. (Eds.), Molecular Microbial Ecology Manual (Vol. 2, pp. 743–769). Dordrecht: Springer.

    Google Scholar 

  • Newport, G., Kuo, A., Flattery, A., et al. (2003). Inactivation of Kex2 diminishes the virulence of Candida albicans. The Journal of Biological Chemistry, 278, 1713–1720.

    Article  CAS  PubMed  Google Scholar 

  • Niu, X. M., Wang, Y. L., Chu, Y. S., et al. (2010). Nematodetoxic aurovertin-type metabolites from a root-knot nematode parasitic fungus Pochonia chlamydosporia. Journal of Agricultural and Food Chemistry, 58, 828–834.

    Article  CAS  PubMed  Google Scholar 

  • Nonaka, K., Ōmura, S., Masuma, R., et al. (2013). Three new Pochonia taxa (Clavicipitaceae) from soils in Japan. Mycologia, 105, 1202–1218.

    Article  PubMed  Google Scholar 

  • Olivares-Bernabeu, C. M., & López-Llorca, L. V. (2002). Fungal egg parasites of plant-parasitic nematodes from Spanish soils. Revista Iberoamericana de Micología, 19, 104–110.

    Google Scholar 

  • Pérez, G., Verdejo, V., Gondim-Porto, C., et al. (2014). Designing a SCAR molecular marker for monitoring Trichoderma cf. harzianum in experimental communities. Journal of Zhejiang University. Science. B, 15, 966–978.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peteira B. (2005). Caracterización del hongo nematofago cepa IMI SD 187 de Pochonia chlamydosporia var. catenulata (Kamischo ex barron y Onions) Zare y Gams. Thesis Universidad Agraria de La Habana, Cuba.

    Google Scholar 

  • Peteira, B., Puertas, A., Hidalgo-Díaz, L., et al. (2005). Real-time PCR to monitor and assess the efficacy of two types of inoculum of the nematophagous fungus Pochonia chlamydosporia var. catenulata against root-knot nematode populations in the field. Biotecnología Aplicada, 22, 261–266.

    Google Scholar 

  • Reeves, C. D., Hu, Z., Reid, R., et al. (2008). Genes for the biosynthesis of the fungal polyketides hypothemycin from Hypomyces subiculosus and radicicol from Pochonia chlamydosporia. Applied and Environmental Microbiology, 74, 5121–5129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogerson, C. T. (1970). The hypocrealean fungi (Ascomycetes, Hypocreales). Mycologia, 62, 865–910.

    Article  CAS  PubMed  Google Scholar 

  • Roger, A. J., Sandblom, O., Doolittle, W. F., et al. (1999). An evaluation of elongation factor 1 alpha as a phylogenetic marker for eukaryotes. Molecular Biology and Evolution, 16, 218–233.

    Article  CAS  PubMed  Google Scholar 

  • Rosso, L., Ciancio, A., & Finetti-Sialer, M. (2007). Application of molecular methods for detection of Pochonia chlamydosporia from soil. Nematropica, 37, 1–8.

    Google Scholar 

  • Rosso, L. C., Finetti-Sialer, M. M., Hirsch, P. R., et al. (2011). Transcriptome analysis shows differential gene expression in the saprotrophic to parasitic transition of Pochonia chlamydosporia. Applied Microbiology and Biotechnology, 90, 1981–1994.

    Article  CAS  PubMed  Google Scholar 

  • Smalla, K., & Heuer, H. (2006). How to assess the abundance and diversity of mobile genetic elements in soil bacterial communities? In P. Nannipieriand & K. Smalla (Eds.), Nucleic acids and proteins in soil (Vol. 8, pp. 313–330). Heidelberg: Springer.

    Chapter  Google Scholar 

  • Scauflaire, J., Gourgue, M., & Munaut, F. (2011). Fusarium temperatum sp. nov. from maize, an emergent species closely related to Fusarium subglutinans. Mycologia, 103, 586–597.

    Article  PubMed  Google Scholar 

  • Schardl, C. L., Young, C. A., Hesse, U., et al. (2013). Plant-symbiotic fungi as chemical engineers: Multi-genome analysis of the clavicipitaceae reveals dynamics of alkaloid loci. PLoS Genetics, 9, e1003323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiba, T., & Sugawara, K. (2005). Resistance to the rice leaf bug, Trigonotylus caelestialium, is conferred by Neotyphodium endophyte infection of perennial ryegrass, Lolium perenne. Entomologia Experimentalis et Applicata, 115, 387–392.

    Article  Google Scholar 

  • Scholte, E. J., Ng’habi, K., Kihonda, J., et al. (2005). An entomopathogenic fungus for control of adult African malaria mosquitoes. Science, 308, 1641–1642.

    Article  CAS  PubMed  Google Scholar 

  • Siddiqui, A., Atkins, S. D., & Kerry, B. R. (2009). Relationship between saprotrophic growth in soil of different biotypes of Pochonia chlamydosporia and the infection of nematode eggs. The Annals of Applied Biology, 155, 131–141.

    Article  Google Scholar 

  • Soloviev, D. A., Jawhara, S., & Fonzi, W. A. (2011). Regulation of innate immune response to Candida albicans infections by aMb2-Pra1p interaction. Infection and Immunity, 79, 1546–1558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spatafora, J. W., & Blackwell, M. (1993). Molecular systematics of unitunicate perithecial ascomycetes: The Clavicipitales-Hypocreales connection. Mycologia, 85, 912–922.

    Article  CAS  Google Scholar 

  • Sung, G. H., Spatafora, J. W., Zare, R., et al. (2001). A revision of Verticillium sect. Prostrata. II. Phylogenetic analyses of SSU and LSU nuclear rDNA sequences from anamorphs and teleomorphs of the Clavicipitaceae. Nova Hedwigia, 72, 311–328.

    Google Scholar 

  • Sung, G. H., Sung, J. M., Nigel, L. J., et al. (2007). A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Molecular Phylogenetics and Evolution, 44, 1204–1223.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Li, L., Li, D., et al. (2015). Yellow pigment aurovertins mediate interactions between the pathogenic fungus Pochonia chlamydosporia and its nematode host. Journal of Agricultural and Food Chemistry, 63, 6577–6587.

    Article  CAS  PubMed  Google Scholar 

  • Ward, E., Kerry, B. R., Manzanilla-López, R. H., et al. (2012). The Pochonia chlamydosporia serine protease gene vcp1 is subject to regulation by carbon, nitrogen and pH: Implications for nematode biocontrol. PLoS One, 7(4), e35657.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White, T. J., Bruns, T., Lee, S., et al. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innes, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR Protocols: A Guide to Methods and Applications (pp. 315–322). New York: Academic Press, Inc.

    Google Scholar 

  • Yang, J., Loffredo, A., Bonerman, J., et al. (2012). Biocontrol efficacy among strains of Pochonia chlamydosporia ibtained from a root-knot nematode suppressive soil. Journal of Nematology, 44, 67–71.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, M. L., Mo, M. H., Xia, Z. Y., et al. (2006). Detection of fungal biocontrol agents against root-knot nematodes by RAPD markers. Mycophatologia, 161, 307–316.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Gabriela Medina-Canales .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Medina-Canales, M.G., Rodríguez-Tovar, A.V. (2017). Molecular Diagnostics of Pochonia chlamydosporia . In: Manzanilla-López, R., Lopez-Llorca, L. (eds) Perspectives in Sustainable Nematode Management Through Pochonia chlamydosporia Applications for Root and Rhizosphere Health. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-59224-4_13

Download citation

Publish with us

Policies and ethics