Skip to main content

Computational Modeling for Fate, Transport and Evolution of Energetic Metal Nanoparticles Grown via Aerosol Route

  • Chapter
  • First Online:
Energetic Materials

Abstract

Energetic nanomaterials have gained prominence in the development of solid-state propellants, explosives and pyrotechnics. Such interests stem from kinetically controlled ignition processes in nanoscale regimes resulting from larger specific surface areas, metastable structures and small diffusion length scales at fuel-oxidizer interfaces. To this end, numerous works have investigated the energetic properties of a large class of metal nanoparticles (NPs) that include Al, Si and Ti. Gas-phase synthesis of metal NPs involve rapid cooling of supersaturated metal vapor (monomers) that initiates free-energy-driven collisional process including condensation/evaporation, and finally, leads to nucleation and the birth of a stable critical cluster. This critical cluster subsequently grows via competing coagulation/coalescence processes while undergoing interfacial reactions including surface oxidation . A fundamental understanding of the thermodynamics and kinetics of these processes can enable precise controlling of the synthesis process parameters to tailor their sizes, morphology, composition and structure, which, in turn, tune their surface oxidation and, energetic properties. The complexity and extremely diverse time scales make experimental studies of these processes highly challenging. Thus, hi-fidelity computational tools and modeling techniques prove to be powerful for detailed mechanistic studies of these processes in an efficient and robust manner. The current chapter focuses on computational studies of fate, transport and evolution of metal NPs grown via aerosol routes. The chapter starts with the discussion on gas-phase homogeneous nucleation, and nucleation rates of critical clusters, followed by kinetic Monte-Carlo (KMC) based studies on non-isothermal coagulation/coalescence processes leading finally to the mass transport phenomena involving oxidation of fractal-like NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Renie J et al (1982) Aluminum particle combustion in composite solid propellants. Purdue University, West Lafayette, Ind

    Book  Google Scholar 

  2. Bakhman N, Belyaev A, Kondrashkov YA (1970) Influence of the metal additives onto the burning rate of the model solid rocket propellants. Phys Combust Explos 6:93

    CAS  Google Scholar 

  3. Chiaverini MJ et al (1997) Instantaneous regression behavior of HTPB solid fuels burning with GOX in a simulated hybrid rocket motor. Int J Energ Mat Chem Propul 4(1–6)

    Google Scholar 

  4. Mench M, Yeh C, Kuo K (1998) Propellant burning rate enhancement and thermal behavior of ultra-fine aluminum powders(Alex). Energ Mat-Prod, Process Charac 30–1

    Google Scholar 

  5. Ritter H, Braun S (2001) High explosives containing ultrafine aluminum ALEX. Propellants, Explos, Pyrotech 26(6):311–314

    Article  CAS  Google Scholar 

  6. Ilyin A et al (2002) Characterization of aluminum powders I. Parameters of reactivity of aluminum powders. Propellants Explos Pyrotech 27(6):361–364

    Google Scholar 

  7. Brousseau P, Anderson CJ (2002) Nanometric aluminum in explosives. Propellants, Explos, Pyrotech 27(5):300–306

    Article  CAS  Google Scholar 

  8. Weiser V, Kelzenberg S, Eisenreich N (2001) Influence of the metal particle size on the ignition of energetic materials. Propellants, Explos, Pyrotech 26(6):284–289

    Article  CAS  Google Scholar 

  9. Pantoya ML, Granier JJ (2005) Combustion behavior of highly energetic thermites: nano versus micron composites. Propellants, Explos, Pyrotech 30(1):53–62

    Article  CAS  Google Scholar 

  10. Pivkina A et al (2004) Nanomaterials for heterogeneous combustion. Propellants, Explos, Pyrotech 29(1):39–48

    Article  CAS  Google Scholar 

  11. van der Heijden AEDM et al (2006) Processing, application and characterization of (ultra)fine and nanometric materials in energetic compositions. Shock Compression Condens Matter Pts 1 and 2 845:1121–1126

    Google Scholar 

  12. Rai A et al (2006) Understanding the mechanism of aluminium nanoparticle oxidation. Combust Theor Model 10(5):843–859

    Article  CAS  Google Scholar 

  13. Mason BA et al (2013) Combustion performance of several nanosilicon-based nanoenergetics. J Propul Power 29(6):1435–1444

    Article  CAS  Google Scholar 

  14. Piekiel NW et al (2013) Combustion and material characterization of porous silicon nanoenergetics. In: 26th Ieee international conference on micro electro mechanical systems (Mems 2013) p 449–452

    Google Scholar 

  15. Thiruvengadathan R et al (2012) Combustion characteristics of silicon-based nanoenergetic formulations with reduced electrostatic discharge sensitivity. Propellants, Explos, Pyrotech 37(3):359–372

    Article  CAS  Google Scholar 

  16. Prakash A, McCormick AV, Zachariah MR (2005) Synthesis and reactivity of a super-reactive metastable intermolecular composite formulation of Al/KMnO4. Adv Mat 17(7):900–

    Google Scholar 

  17. Perry WL et al (2004) Nano-scale tungsten oxides for metastable intermolecular composites. Propellants, Explos, Pyrotech 29(2):99–105

    Article  CAS  Google Scholar 

  18. Perry WL et al (2007) Energy release characteristics of the nanoscale aluminum-tungsten oxide hydrate metastable intermolecular composite. J Appl Phys 101(6)

    Google Scholar 

  19. Berner MK, Zarko VE, Talawar MB (2013) Nanoparticles of energetic materials: synthesis and properties (review). Combust Explosion Shock Waves 49(6):625–647

    Article  Google Scholar 

  20. Prakash A, McCormick AV, Zachariah MR (2005) Tuning the reactivity of energetic nanoparticles by creation of a core-shell nanostructure. Nano Lett 5(7):1357–1360

    Article  CAS  Google Scholar 

  21. Zhang KL et al (2007) Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate. Nanotechnology 18(27)

    Google Scholar 

  22. Prakash A, McCormick AV, Zachariah MR (2004) Aero-sol-gel synthesis of nanoporous iron-oxide particles: A potential oxidizer for nanoenergetic materials. Chem Mater 16(8):1466–1471

    Article  CAS  Google Scholar 

  23. Subramanian S et al (2008) Nanoporous silicon based energetic materials, DTIC Document

    Google Scholar 

  24. Blobaum KJ et al (2003) Deposition and characterization of a self-propagating CuOx/Al thermite reaction in a multilayer foil geometry. J Appl Phys 94(5):2915–2922

    Article  CAS  Google Scholar 

  25. Ma E et al (1990) Self-propagating explosive reactions in Al/Ni multilayer thin-films. Appl Phys Lett 57(12):1262–1264

    Article  CAS  Google Scholar 

  26. Gen M, Ziskin M, Petrov I (1959) A study of the dispersion of aluminium aerosols as dependent on the conditions of their formation. Doklady Akademii Nauk SSSR 127(2):366–368

    Google Scholar 

  27. Kwon YS et al (2003) Passivation process for superfine aluminum powders obtained by electrical explosion of wires. Appl Surf Sci 211(1–4):57–67

    Article  CAS  Google Scholar 

  28. Kwon YS et al (2007) Properties of powders produced by electrical explosions of copper-nickel alloy wires. Mater Lett 61(14–15):3247–3250

    Article  CAS  Google Scholar 

  29. Sarathi R, Sindhu TK, Chakravarthy SR (2007) Generation of nano aluminium powder through wire explosion process and its characterization. Mater Charact 58(2):148–155

    Article  CAS  Google Scholar 

  30. Tillotson TM et al (2001) Nanostructured energetic materials using sol-gel methodologies. J Non-Cryst Solids 285(1–3):338–345

    Article  CAS  Google Scholar 

  31. Jacobson MZ, Turco RP (1995) Simulating condensational growth, evaporation, and coagulation of aerosols using a combined moving and stationary size grid. Aerosol Sci Technol 22(1):73–92

    Article  CAS  Google Scholar 

  32. Biswas P et al (1997) Characterization of iron oxide-silica nanocomposites in flames. 2. Comparison of discrete-sectional model predictions to experimental data. J Mater Res 12(3):714–723

    Article  CAS  Google Scholar 

  33. Landgrebe JD, Pratsinis SE (1990) A discrete-sectional model for particulate production by gas-phase chemical-reaction and aerosol coagulation in the free-molecular regime. J Colloid Interface Sci 139(1):63–86

    Article  CAS  Google Scholar 

  34. Lehtinen KEJ, Zachariah MR (2001) Self-preserving theory for the volume distribution of particles undergoing Brownian coagulation. J Colloid Interface Sci 242(2):314–318

    Article  CAS  Google Scholar 

  35. Girshick SL, Chiu CP (1989) homogeneous nucleation of particles from the vapor-phase in thermal plasma synthesis. Plasma Chem Plasma Process 9(3):355–369

    Article  CAS  Google Scholar 

  36. Panda S, Pratsinis SE (1995) Modeling the synthesis of aluminum particles by evaporation-condensation in an aerosol flow reactor. Nanostruct Mater 5(7–8):755–767

    Article  CAS  Google Scholar 

  37. Prakash A, Bapat AP, Zachariah MR (2003) A simple numerical algorithm and software for solution of nucleation, surface growth, and coagulation problems. Aerosol Sci Technol 37(11):892–898

    Article  CAS  Google Scholar 

  38. Mukherjee D, Prakash A, Zachariah MR (2006) Implementation of a discrete nodal model to probe the effect of size-dependent surface tension on nanoparticle formation and growth. J Aerosol Sci 37(10):1388–1399

    Article  CAS  Google Scholar 

  39. Zachariah MR, Carrier MJ (1999) Molecular dynamics computation of gas-phase nanoparticle sintering: a comparison with phenomenological models. J Aerosol Sci 30(9):1139–1151

    Article  CAS  Google Scholar 

  40. Yasuoka K, Matsumoto M (1998) Molecular dynamics of homogeneous nucleation in the vapor phase. I. Lennard-Jones fluid. J Chem Phys 109(19):8451–8462

    Article  CAS  Google Scholar 

  41. Lummen N, Kraska T (2005) Molecular dynamics investigation of homogeneous nucleation and cluster growth of platinum clusters from supersaturated vapour. Nanotechnology 16(12):2870–2877

    Article  CAS  Google Scholar 

  42. Li ZH et al (2007) Free energies of formation of metal clusters and nanoparticles from molecular simulations: Al-n with n = 2–60. J Phys Chem C 111(44):16227–16242

    Article  CAS  Google Scholar 

  43. McGreevy RL (2001) Reverse Monte Carlo modelling. J Phys-Condens Matter 13(46):R877–R913

    Article  CAS  Google Scholar 

  44. Mukherjee D, Sonwane CG, Zachariah MR (2003) Kinetic Monte Carlo simulation of the effect of coalescence energy release on the size and shape evolution of nanoparticles grown as an aerosol. J Chem Phys 119(6):3391–3404

    Article  CAS  Google Scholar 

  45. Gillespie DT (1975) Exact method for numerically simulating stochastic coalescence process in a cloud. J Atmos Sci 32(10):1977–1989

    Article  Google Scholar 

  46. Liffman K (1992) A direct simulation Monte-Carlo method for cluster coagulation. J Comput Phys 100(1):116–127

    Article  Google Scholar 

  47. Kruis FE, Maisels A, Fissan H (2000) Direct simulation Monte Carlo method for particle coagulation and aggregation. AIChE J 46(9):1735–1742

    Article  CAS  Google Scholar 

  48. Efendiev Y, Zachariah MR (2002) Hybrid Monte Carlo method for simulation of two-component aerosol coagulation and phase segregation. J Colloid Interface Sci 249(1):30–43

    Article  CAS  Google Scholar 

  49. Mukherjee D, Wang M, Khomami B (2012) Impact of particle morphology on surface oxidation of nanoparticles: a kinetic Monte Carlo based study. AIChE J 58(11):3341–3353

    Article  CAS  Google Scholar 

  50. Auer S, Frenkel D (2001) Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409(6823):1020–1023

    Article  CAS  Google Scholar 

  51. Valeriani C et al (2007) Computing stationary distributions in equilibrium and nonequilibrium systems with forward flux sampling. J Chem Phys 127(11)

    Google Scholar 

  52. Allen RJ, Valeriani C, Ten Wolde PR (2009) Forward flux sampling for rare event simulations. J Phys-Condens Matter 21(46)

    Google Scholar 

  53. Katz JL et al (1976) Condensation of a supersaturated vapor. III. The homogeneous nucleation of CCl4, CHCl3, CCl3F, and C2H2Cl4. J Chem Phys 65(1):382–392

    Article  CAS  Google Scholar 

  54. Katz JL (1970) Condensation of a Supersaturated Vapor. I. The homogeneous nucleation of the n-alkanes. J Chem Phys 52(9):4733–4748

    Article  CAS  Google Scholar 

  55. Oxtoby DW (1992) Homogeneous nucleation: theory and experiment. J Phys: Condens Matter 4(38):7627

    Google Scholar 

  56. Rusyniak M et al (2001) Vapor phase homogeneous nucleation of higher alkanes: dodecane, hexadecane, and octadecane. 1. Critical supersaturation and nucleation rate measurements. J Phys Chem B 105(47):11866–11872

    Article  CAS  Google Scholar 

  57. Finney EE, Finke RG (2008) Nanocluster nucleation and growth kinetic and mechanistic studies: a review emphasizing transition-metal nanoclusters. J Colloid Interface Sci 317(2):351–374

    Article  CAS  Google Scholar 

  58. Schmitt JL (1981) Precision expansion cloud chamber for homogeneous nucleation studies. Rev Sci Instrum 52(11):1749–1754

    Article  CAS  Google Scholar 

  59. Wagner P, Strey R (1981) Homogeneous nucleation rates of water vapor measured in a two-piston expansion chamber. J Phys Chem 85(18):2694–2698

    Article  CAS  Google Scholar 

  60. Hameri K, Kulmala M (1996) Homogeneous nucleation in a laminar flow diffusion chamber: the effect of temperature and carrier gas on dibutyl phthalate vapor nucleation rate at high supersaturations. J Chem Phys 105(17):7696–7704

    Article  CAS  Google Scholar 

  61. Anisimov MP, Hameri K, Kulmala M (1994) Construction and test of laminar-flow diffusion chamber–homogeneous nucleation of Dbp and N-hexanol. J Aerosol Sci 25(1):23–32

    Article  CAS  Google Scholar 

  62. Wyslouzil BE et al (1991) Binary nucleation in acid water-systems. 2. Sulfuric-acid water and a comparison with methanesulfonic-acid water. J Chem Phys 94(10):6842–6850

    Article  CAS  Google Scholar 

  63. Viisanen Y, Kulmala M, Laaksonen A (1997) Experiments on gas-liquid nucleation of sulfuric acid and wafer. J Chem Phys 107(3):920–926

    Article  CAS  Google Scholar 

  64. Fisk JA et al (1998) The homogeneous nucleation of cesium vapor. Atmos Res 46(3–4):211–222

    Article  CAS  Google Scholar 

  65. Ferguson FT, Nuth JA (2000) Experimental studies of the vapor phase nucleation of refractory compounds. V. The condensation of lithium. J Chem Phys 113(10):4093–4102

    Article  CAS  Google Scholar 

  66. Zhang RY et al (2012) Nucleation and growth of nanoparticles in the atmosphere. Chem Rev 112(3):1957–2011

    Article  CAS  Google Scholar 

  67. Lu HM, Jiang Q (2005) Size-dependent surface tension and Tolman’s length of droplets. Langmuir 21(2):779–781

    Article  CAS  Google Scholar 

  68. Lai SL et al (1996) Size-dependent melting properties of small tin particles: nanocalorimetric measurements. Phys Rev Lett 77(1):99–102

    Article  CAS  Google Scholar 

  69. Tomanek D, Schluter MA (1986) Calculation of magic numbers and the stability of small Si clusters. Phys Rev Lett 56(10):1055–1058

    Article  CAS  Google Scholar 

  70. Boustani I et al (1987) Systematic ab initio configuration-interaction study of alkali-metal clusters: Relation between electronic structure and geometry of small Li clusters. Phys Rev B 35(18):9437

    Article  CAS  Google Scholar 

  71. Li ZH, Truhlar DG (2008) Cluster and nanoparticle condensation and evaporation reactions. Thermal rate constants and equilibrium constants of Al(m) + Al(n−m) <-> Al(n) with n = 2–60 and m = 1–8. J Phys Chem C 112(30):11109–11121

    Article  CAS  Google Scholar 

  72. Girshick SL, Agarwal P, Truhlar DG (2009) Homogeneous nucleation with magic numbers: aluminum. J Chem Phys 131(13)

    Google Scholar 

  73. Wyslouzil BE, Seinfeld JH (1992) Nonisothermal homogeneous nucleation. J Chem Phys 97(4):2661–2670

    Article  CAS  Google Scholar 

  74. Barrett JC (2008) A stochastic simulation of nonisothermal nucleation. J Chem Phys 128(16)

    Google Scholar 

  75. Domilovsky ER, Lushnikov AA, Piskunov VN (1979) Monte-Carlo simulation of coagulation processes. Izvestiya Akademii Nauk Sssr Fizika Atmosfery I Okeana 15(2):194–201

    Google Scholar 

  76. Debry E, Sportisse B, Jourdain B (2003) A stochastic approach for the numerical simulation of the general dynamics equation for aerosols. J Comput Phys 184(2):649–669

    Article  Google Scholar 

  77. Garcia A et al (1987) A Monte Carlo method of coagulation. Phys A 143:535–546

    Article  Google Scholar 

  78. Smith M, Matsoukas T (1998) Constant-number Monte Carlo simulation of population balances. Chem Eng Sci 53(9):1777–1786

    Article  CAS  Google Scholar 

  79. Efendiev Y, Zachariah MR (2003) Hierarchical hybrid Monte-Carlo method for simulation of two-component aerosol nucleation, coagulation and phase segregation. J Aerosol Sci 34(2):169–188

    Article  CAS  Google Scholar 

  80. Davari SA, Mukherjee D (2017) Kinetic Monte Carlo simulation for homogeneous nucleation of metal nanoparticles during vapor phase synthesis. AIChE J. Accepted. doi:10.1002/aic.15887

  81. Pratsinis SE (1998) Flame aerosol synthesis of ceramic powders. Prog Energy Combust Sci 24(3):197–219

    Article  CAS  Google Scholar 

  82. Mench MM et al (1998) Comparison of thermal behavior of regular and ultra-fine aluminum powders (Alex) made from plasma explosion process. Combust Sci Technol 135(1–6):269–292

    Article  CAS  Google Scholar 

  83. Ozaki Y, Ichinose N, Kashū S (1992) Superfine particle technology. Springer, Berlin

    Google Scholar 

  84. Megaridis CM, Dobbins RA (1990) Morphological description of flame-generated materials. Combust Sci Technol 71(1–3):95–109

    Article  CAS  Google Scholar 

  85. Friedlander SK (1977) Smoke, dust and haze: Fundamentals of aerosol behavior. Wiley-Interscience, New York, vol 333, p 1

    Google Scholar 

  86. Lehtinen KEJ, Zachariah MR (2001) Effect of coalescence energy release on the temporal shape evolution of nanoparticles. Phys Rev B 63(20)

    Google Scholar 

  87. Windeler RS, Lehtinen KEJ, Friedlander SK (1997) Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet. 2. Particle size and neck formation - Comparison with theory. Aerosol Sci Technol 27(2):191–205

    Article  CAS  Google Scholar 

  88. Windeler RS, Friedlander SK, Lehtinen KEJ (1997) Production of nanometer-sized metal oxide particles by gas phase reaction in a free jet. 1. Experimental system and results. Aerosol Sci Technol 27(2):174–190

    Article  CAS  Google Scholar 

  89. Tsantilis S, Pratsinis SE (2000) Evolution of primary and aggregate particle-size distributions by coagulation and sintering. AIChE J 46(2):407–415

    Article  CAS  Google Scholar 

  90. Ehrman SH, Friedlander SK, Zachariah MR (1998) Characteristics of SiO2/TiO2 nanocomposite particles formed in a premixed flat flame. J Aerosol Sci 29(5–6):687–706

    Article  CAS  Google Scholar 

  91. Schweigert IV et al (2002) Structure and properties of silica nanoclusters at high temperatures. Phys Rev B 65(23)

    Google Scholar 

  92. Kruis FE et al (1993) A simple-model for the evolution of the characteristics of aggregate particles undergoing coagulation and sintering. Aerosol Sci Technol 19(4):514–526

    Article  CAS  Google Scholar 

  93. Xing YC, Rosner DE (1999) Prediction of spherule size in gas phase nanoparticle synthesis. J Nanopart Res 1(2):277–291

    Article  CAS  Google Scholar 

  94. Freund HJ, Bauer SH (1977) Homogeneous nucleation in metal vapors. 2. Dependence of heat of condensation on cluster size. J Phys Chem 81(10):994–1000

    Article  CAS  Google Scholar 

  95. Lehtinen K, Zachariah M (2001) Energy accumulation during the coalescence and coagulation of nanoparticles. Phys Rev B 63(20):205402

    Article  CAS  Google Scholar 

  96. Zachariah MR, Carrier MJ, BlaistenBarojas E (1996) Properties of silicon nanoparticles: a molecular dynamics study. J Phys Chem 100(36):14856–14864

    Article  CAS  Google Scholar 

  97. Koch W, Friedlander SK (1990) The effect of particle coalescence on the surface-area of a coagulating aerosol. J Colloid Interface Sci 140(2):419–427

    Article  CAS  Google Scholar 

  98. Wu MK et al (1993) Controlled synthesis of nanosized particles by aerosol processes. Aerosol Sci Technol 19(4):527–548

    Article  CAS  Google Scholar 

  99. Martin DL, Raff LM, Thompson DL (1990) Silicon dimer formation by three-body recombination. J Chem Phys 92(9):5311–5318

    Article  CAS  Google Scholar 

  100. Yaws C (1994) Handbook of vapor pressure. Gulf Pub. Co., Houston

    Google Scholar 

  101. Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13(6):2287

    Article  CAS  Google Scholar 

  102. Tandon P, Rosner DE (1999) Monte Carlo simulation of particle aggregation and simultaneous restructuring. J Colloid Interface Sci 213(2):273–286

    Article  CAS  Google Scholar 

  103. Iida T et al (2000) Equation for estimating viscosities of industrial mold fluxes. High Temp Mater Processes (London) 19(3–4):153–164

    CAS  Google Scholar 

  104. Hansen K, Campbell EEB (1998) Thermal radiation from small particles. Phys Rev E 58(5):5477–5482

    Article  CAS  Google Scholar 

  105. Kumar S, Tien CL (1990) Dependent absorption and extinction of radiation by small particles. J Heat Transfer-Trans Asme 112(1):178–185

    Article  CAS  Google Scholar 

  106. Tomchuk PM, Tomchuk BP (1997) Optical absorption by small metallic particles. J Exp Theor Phys 85(2):360–369

    Article  Google Scholar 

  107. Altman IS et al (2001) Experimental estimate of energy accommodation coefficient at high temperatures. Phys Rev E 64(5)

    Google Scholar 

  108. Bohren CF, Huffman DR (1983) Absorption and scattering by a sphere. Absorption Scattering Light Small Part 82–129

    Google Scholar 

  109. Siegel R, Howel J (1992) Thermal radiation heat transfer. Hemisphere Publishing Corp, Washington DC

    Google Scholar 

  110. Rosner DE, Yu SY (2001) MC simulation of aerosol aggregation and simultaneous spheroidization. AIChE J 47(3):545–561

    Article  CAS  Google Scholar 

  111. Norris JR (1999) Smoluchowski’s coagulation equation: uniqueness, nonuniqueness and a hydrodynamic limit for the stochastic coalescent. Ann Appl Probab 9(1):78–109

    Article  Google Scholar 

  112. Kostoglou M, Konstandopoulos AG (2001) Evolution of aggregate size and fractal dimension during Brownian coagulation. J Aerosol Sci 32(12):1399–1420

    Article  CAS  Google Scholar 

  113. Gooch JRV, Hounslow MJ (1996) Monte Carlo simulation of size-enlargement mechanisms in crystallization. AIChE J 42(7):1864–1874

    Article  Google Scholar 

  114. Shah BH, Ramkrishna D, Borwanker JD (1977) Simulation of particulate systems using concept of interval of quiescence. AIChE J 23(6):897–904

    Article  CAS  Google Scholar 

  115. Friedlander SK, Wu MK (1994) Linear rate law for the decay of the excess surface-area of a coalescing solid particle. Phys Rev B 49(5):3622–3624

    Article  CAS  Google Scholar 

  116. Vemury S, Kusters KA, Pratsinis SE (1994) Time-lag for attainment of the self-preserving particle-size distribution by coagulation. J Colloid Interface Sci 165(1):53–59

    Article  CAS  Google Scholar 

  117. Rosner DE (2005) Flame synthesis of valuable nanoparticles: Recent progress/current needs in areas of rate laws, population dynamics, and characterization. Ind Eng Chem Res 44(16):6045–6055

    Article  CAS  Google Scholar 

  118. Strobel R, Pratsinis SE (2007) Flame aerosol synthesis of smart nanostructured materials. J Mater Chem 17(45):4743–4756

    Article  CAS  Google Scholar 

  119. Bapat A et al (2004) Plasma synthesis of single-crystal silicon nanoparticles for novel electronic device applications. Plasma Phys Controlled Fusion 46:B97–B109

    Article  CAS  Google Scholar 

  120. Holunga DM, Flagan RC, Atwater HA (2005) A scalable turbulent mixing aerosol reactor for oxide-coated silicon nanoparticles. Ind Eng Chem Res 44(16):6332–6341

    Article  CAS  Google Scholar 

  121. Kommu S, Wilson GM, Khomami B (2000) A theoretical/experimental study of silicon epitaxy in horizontal single-wafer chemical vapor deposition reactors. J Electrochem Soc 147(4):1538–1550

    Article  CAS  Google Scholar 

  122. Gelbard F, Tambour Y, Seinfeld JH (1980) Sectional representations for simulating aerosol dynamics. J Colloid Interface Sci 76(2):541–556

    Article  CAS  Google Scholar 

  123. Frenklach M, Harris SJ (1987) Aerosol dynamics modeling using the method of moments. J Colloid Interface Sci 118(1):252–261

    Article  CAS  Google Scholar 

  124. Whitby ER, McMurry PH (1997) Modal aerosol dynamics modeling. Aerosol Sci Technol 27(6):673–688

    Article  CAS  Google Scholar 

  125. Kommu S, Khomami B, Biswas P (2004) Simulation of aerosol dynamics and transport in chemically reacting particulate matter laden flows. Part I: algorithm development and validation. Chem Eng Sci 59(2):345–358

    Article  CAS  Google Scholar 

  126. Garrick SC, Lehtinen KEJ, Zachariah MR (2006) Nanoparticle coagulation via a Navier-Stokes/nodal methodology: Evolution of the particle field. J Aerosol Sci 37(5):555–576

    Article  CAS  Google Scholar 

  127. Tsantilis S, Pratsinis SE (2004) Soft- and hard-agglomerate aerosols made at high temperatures. Langmuir 20(14):5933–5939

    Article  CAS  Google Scholar 

  128. Wu MK, Friedlander SK (1993) Enhanced power-law agglomerate growth in the free-molecule regime. J Aerosol Sci 24(3):273–282

    Article  CAS  Google Scholar 

  129. Maricq MM (2007) Coagulation dynamics of fractal-like soot aggregates. J Aerosol Sci 38(2):141–156

    Article  CAS  Google Scholar 

  130. Zurita-Gotor M, Rosner DE (2002) Effective diameters for collisions of fractal-like aggregates: Recommendations for improved aerosol coagulation frequency predictions. J Colloid Interface Sci 255(1):10–26

    Article  CAS  Google Scholar 

  131. Schmid HJ et al (2006) Evolution of the fractal dimension for simultaneous coagulation and sintering. Chem Eng Sci 61(1):293–305

    Article  CAS  Google Scholar 

  132. Zhou L et al (2008) Ion-mobility spectrometry of nickel nanoparticle oxidation kinetics: application to energetic materials. J Phys Chem C 112(42):16209–16218

    Article  CAS  Google Scholar 

  133. Dikici B et al (2009) Influence of aluminum passivation on the reaction mechanism: flame propagation studies. Energy Fuels 23:4231–4235

    Article  CAS  Google Scholar 

  134. Wang CM et al (2009) Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. J Am Chem Soc 131(25):8824–8832

    Article  CAS  Google Scholar 

  135. Rai A et al (2004) Importance of phase change of aluminum in oxidation of aluminum nanoparticles. J Phys Chem B 108(39):14793–14795

    Article  CAS  Google Scholar 

  136. Sun J, Pantoya ML, Simon SL (2006) Dependence of size and size distribution on reactivity of aluminum nanoparticles in reactions with oxygen and MoO3. Thermochim Acta 444(2):117–127

    Article  CAS  Google Scholar 

  137. Trunov MA et al (2005) Effect of polymorphic phase transformations in Al2O3 film on oxidation kinetics of aluminum powders. Combust Flame 140(4):310–318

    Article  CAS  Google Scholar 

  138. Aumann CE, Skofronick GL, Martin JA (1995) Oxidation behavior of aluminum nanopowders. J Vac Sci Technol, B 13(3):1178–1183

    Article  CAS  Google Scholar 

  139. Park K et al (2005) Size-resolved kinetic measurements of aluminum nanoparticle oxidation with single particle mass spectrometry. J Phys Chem B 109(15):7290–7299

    Article  CAS  Google Scholar 

  140. Mukherjee D, Rai A, Zachariah MR (2006) Quantitative laser-induced breakdown spectroscopy for aerosols via internal calibration: application to the oxidative coating of aluminum nanoparticles. J Aerosol Sci 37(6):677–695

    Article  CAS  Google Scholar 

  141. Alavi S, Mintmire JW, Thompson DL (2005) Molecular dynamics simulations of the oxidation of aluminum nanoparticles. J Phy Chem B 109(1):209–214

    Article  CAS  Google Scholar 

  142. Vashishta P, Kalia RK, Nakano A (2006) Multimillion atom simulations of dynamics of oxidation of an aluminum nanoparticle and nanoindentation on ceramics. J Phys Chem B 110(8):3727–3733

    Article  CAS  Google Scholar 

  143. Zhang F, Gerrard K, Ripley RC (2009) Reaction mechanism of aluminum-particle-air detonation. J Propul Power 25(4):845–858

    Article  CAS  Google Scholar 

  144. Trunov MA et al (2006) Oxidation and melting of aluminum nanopowders. J Phys Chem B 110(26):13094–13099

    Article  CAS  Google Scholar 

  145. Xiong Y, Pratsinis SE (1993) Formation of agglomerate particles by coagulation and sintering. 1. A 2-dimensional solution of the population balance equation. J Aerosol Sci 24(3):283–300

    Article  CAS  Google Scholar 

  146. Mandelbrot BB (1983) The fractal geometry of nature 173 (Macmillan)

    Google Scholar 

  147. Meakin P, Witten TA (1983) Growing interface in diffusion-limited aggregation. Phys Rev A 28(5):2985–2989

    Article  CAS  Google Scholar 

  148. Schmidtott A (1988) New approaches to insitu characterization of ultrafine agglomerates. J Aerosol Sci 19(5):553–563

    Article  CAS  Google Scholar 

  149. Buffat P, Borel JP (1976) Size effect on melting temperature of gold particles. Phys Rev A 13(6):2287–2298

    Article  CAS  Google Scholar 

  150. Levenspiel O (1999) Chemical reaction engineering. Ind Eng Chem Res 38(11):4140–4143

    Article  CAS  Google Scholar 

  151. German RM (1996) Sintering theory and practice. Wiley, New York

    Google Scholar 

  152. Assael MJ et al (2006) Reference data for the density and viscosity of liquid aluminum and liquid iron. J Phys Chem Ref Data 35(1):285–300

    Article  CAS  Google Scholar 

  153. Paradis P-F, Ishikawa T (2005) Surface tension and viscosity measurements of liquid and undercooled alumina by containerless techniques. Jpn J Appl Phys 44:5082–5085

    Article  CAS  Google Scholar 

  154. Sarou-Kanian V, Millot F, Rifflet JC (2003) Surface tension and density of oxygen-free liquid aluminum at high temperature. Int J Thermophys 24(1):277–286

    Article  CAS  Google Scholar 

  155. Blackburn PE, Buchler A, Stauffer JL (1966) Thermodynamics of vaporization in the aluminum oxide-boron oxide system. J Phys Chem 70(8):2469–2474

    Article  CAS  Google Scholar 

  156. Polyak EV, Sergeev SV (1941) Compt Rend (Doklady) Acad Sci URSS 33

    Google Scholar 

  157. Samsonov G (1982) The oxide handbook. Springer, New York

    Book  Google Scholar 

  158. Jensen JE et al (1980) Brookhaven national laboratory selected cryogenic data notebook, U.S.D.O.E. Brookhaven National Laboratory Associated Universities Inc., Editor. Brookhaven national Laboratory Associated Universities: UptUUpton, NY

    Google Scholar 

  159. Munro RG (1997) Evaluated material properties for a sintered alpha-alumina. J Am Ceram Soc 80(8):1919–1928

    Article  CAS  Google Scholar 

  160. Weast RC (1989) CRC handbook of chemistry and physics. CRC Press, Boca Raton, FL

    Google Scholar 

  161. Astier M, Vergnon P (1976) Determination of the diffusion coefficients from sintering data of ultrafine oxide particles. J Solid State Chem 19(1):67–73

    Google Scholar 

Download references

Acknowledgements

Figures, tables and discussions within Sects. 3 and 4 were in part or whole adapted/reprinted from the journal articles, J. Chem. Phys. 119, 3391 (2003) [44] and AIChE J., 58,3341 (2012) [49] with the author’s (D. Mukherjee’s) copyright permission from AIP publishing and Wiley Online respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dibyendu Mukherjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mukherjee, D., Davari, S.A. (2017). Computational Modeling for Fate, Transport and Evolution of Energetic Metal Nanoparticles Grown via Aerosol Route. In: Shukla, M., Boddu, V., Steevens, J., Damavarapu, R., Leszczynski, J. (eds) Energetic Materials. Challenges and Advances in Computational Chemistry and Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-59208-4_9

Download citation

Publish with us

Policies and ethics