Skip to main content

The Relationship Between Flame Structure and Burning Rate for Ammonium Perchlorate Composite Propellants

  • Chapter
  • First Online:
Energetic Materials

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 25))

Abstract

The burning rate of a propellant is one of the most desired pieces of information for rocket motor design. Propellant burning rate is known to be linked to the microscale flame structures located just above the propellant surface. Flame structure and burning rate for an ammonium perchlorate composite propellant depend in large part on three factors: ammonium perchlorate particle size, propellant formulation, and pressure. Propellant burning rates are in general higher with decreasing AP particle size and increasing pressure. When the microscale flame structures sit higher, on average, above the propellant surface, the propellant will have slower burning rates due (in part) to decreased heat feedback to the propellant surface. The addition of burning rate modifiers to the propellant will also change the flame structure, and therefore the burning rate. Currently, propellants are developed using iterations of mixing and testing to obtain burning rates and physical parameters for computer models. However, this method is not optimal due to the large amount of time and cost involved with this highly empirical approach. Ideally, modelers would be able to make a priori predictions of formulation burning rates, but we are far from that currently. Modelers do desire to create high-fidelity computer models to simulate burning rocket propellants, and much progress has been made in recent years; however, relatively little is known about the actual flame structure in composite propellants which has had limited advances. Knowledge of the variation of flame structure with pressure and propellant formulation will not only assist in the validation of these high-fidelity computer models but will also provide insight to propellant formulators as they seek to use alternate ingredients and methods. This chapter seeks to describe the current data we have on the flame structures in ammonium perchlorate composite propellants and how microscale flame structure affects global burning rate. We review the status of current modeling, diagnostics that have been applied, simplified configurations that have been considered, and recent in situ measurements that are now available for at least the final diffusion flame. Although much remains to be done, significant advancement has been made to reach the ultimate goal of truly predictive propellant simulation and design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AP:

Ammonium perchlorate

APCP:

Ammonium perchlorate composite propellant

BDP:

Beckstead-Derr-Price model

CTPB:

Carboxy-terminated polybutadiene

DCPD:

Dicyclopentadiene

HTPB:

Hydroxyl-terminated polybutadiene

ICCD:

Intensified charge-coupled device

LPDL:

Low pressure deflagration limit

PBAA:

Polybutadiene acrylic acid

PBAN:

Polybutadiene acrylonitrile

PLIF:

Planar laser-induced fluorescence

PS:

Polystyrene

PU:

Polyurethene

SEM:

Scanning electron microscope

References

  1. Sabadell AJ, Wenograd J, Summerfield M (1965) AIAA J 3:1580

    Article  Google Scholar 

  2. Hermance CE (1966) AIAA J 4:1629

    Article  CAS  Google Scholar 

  3. Summerfield M, Sutherland GS, Webb MJ, Taback HJ, Hall KP (1960) In: Solid propellant rocket research american institute of aeronautics and astronautics, Reston, VA, USA, p 141

    Google Scholar 

  4. Sparks JF, Friedlander MP III (1999) Fifty years of solid propellant technical achievements at Atlantic Research Corporation. In: 35th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Los Angeles, CA

    Google Scholar 

  5. Chaturvedi S, Dave PN (2015) Arabian J Chem (In press)

    Google Scholar 

  6. Chaturvedi S, Dave PN (2013) J Saudi Chem Soc 17:135

    Article  CAS  Google Scholar 

  7. Kumari A, Mehilal, Jain S, Jain MK, Bhattacharya B (2013) J Energ Mater 31:192

    Google Scholar 

  8. Kuo KK, Acharya R (2012) In: Applications of turbulent and multiphase combustion. Wiley, Hoboken, p 1

    Google Scholar 

  9. Ramakrishna PA, Paul PJ, Mukunda HS, Sohn CH (2005) Proc Comb Inst 30:2097

    Article  Google Scholar 

  10. Oommen C, Jain SR (1998) J Hazard Mater A67:253

    Google Scholar 

  11. Parr TP, Hanson-Parr DM (1996) Symp (Int) Comb 26:1981

    Google Scholar 

  12. Jeppson MB (1998) A kinetic model for the premixed combustion of a fine AP/HTPB composite propellant. Brigham Young University

    Google Scholar 

  13. Knott GM, Jackson TL, Buckmaster J (2001) AIAA J 39:678

    Article  CAS  Google Scholar 

  14. McGeary RK (1961) J Am Ceram Soc 44:513

    Article  CAS  Google Scholar 

  15. Sutton GP, Biblarz O (2001) Rocket propulsion elements. Wiley, New York, pp 475–519

    Google Scholar 

  16. Hill P, Peterson C (1992) Mechanics and thermodynamics of propulsion. Addison-Wesley Publishing Company, Inc., Prentice Hall

    Google Scholar 

  17. Brewster MQ, Hites MH, Son SF (1993) Combust Flame 94:178

    Article  CAS  Google Scholar 

  18. Kishore K, Sunitha MR (1979) AIAA J 17:1118

    Article  CAS  Google Scholar 

  19. Dey A, Athar J, Varma P, Prasant H, Sikder AK, Chattopadhyay S (2015) RCS Adv 5:1950

    CAS  Google Scholar 

  20. Huang C, Li C, Shi G (2012) Energy Environ Sci 5:8848

    Article  CAS  Google Scholar 

  21. Li N, Cao M, Wu Q, Hu C (2012) CrystEngComm 14:428

    Article  CAS  Google Scholar 

  22. Li N, Geng Z, Cao M, Ren L, Zhao X, Liu B, Tian Y, Hu C (2013) Carbon 54:124

    Article  CAS  Google Scholar 

  23. Wanga B, Park J, Wang C, Ahn H, Wanga G (2010) Electrochim Acta 55:6812

    Article  Google Scholar 

  24. Zhao J, Liu Z, Qin Y, Hua W (2014) CrystEngComm 16:2001

    Article  CAS  Google Scholar 

  25. Chaturvedi S, Dave PN (2012) J Exp Nanosci 7:205

    Article  CAS  Google Scholar 

  26. Strahle WC, Handley JC, Milkie TT (1973) Combust Sci Technol 8:297

    Article  Google Scholar 

  27. Hedman TD, Reese DA, Cho KY, Groven LJ, Lucht RP, Son SF (2012) Combust Flame 159:1748

    Article  CAS  Google Scholar 

  28. Ma Z, Li F, Chen A-S, Bai H-P (2004) Acta Chim Sinica 62:1252

    CAS  Google Scholar 

  29. Joshi SS, Patil PR, Krishnamurthy VN (2008) Defence Sci J 58:721

    Article  CAS  Google Scholar 

  30. Chakravarthy SR, Price EW, Sigman RK (1997) J Propuls Power 13:471

    Article  CAS  Google Scholar 

  31. Pittman CU Jr (1969) AIAA J 7:328

    Article  CAS  Google Scholar 

  32. Patil PR, Krishnamurthy VN, Joshi SS (2006) Propellants Explos Pyrotech 31:442

    Article  CAS  Google Scholar 

  33. Jayaraman K, Anand KV, Chakravarthy SR, Sarathi R (2009) Combust Flame 156:1662

    Article  CAS  Google Scholar 

  34. Lu K-T, Yang T-M, Li J-S, Yeh T-F (2012) Combust Sci Technol 184:2100

    Article  CAS  Google Scholar 

  35. Kohga M (2011) Propellants Explos Pyrotech 36:57

    CAS  Google Scholar 

  36. Krishnan S, Periasamy C (1986) AIAA J 24:1670

    Article  CAS  Google Scholar 

  37. Reese DA, Son SF, Groven LJ (2012) Propellants Explos Pyrotech 37:635

    Article  CAS  Google Scholar 

  38. Ma Z, Wi R, Song J, Li C, Chen R, Zhang L (2012) Propellants Explos Pyrotech 37:183

    Google Scholar 

  39. Price EW, Chakravarthy SR, Sigman RK, Freeman JM (1997) Pressure dependence of burning rate of ammonium perchlorate-hydrocarbon binder solid propellants. In: 33rd AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Seattle, WA

    Google Scholar 

  40. Cai W, Thakre P, Yang V (2008) Combust Sci Technol 180:2143

    Article  CAS  Google Scholar 

  41. Brewster MQ, Mullen JC (2011) Combust Explos Shock+ 36:200

    Google Scholar 

  42. Beckstead MW, Derr RL, Price CW (1970) AIAA J 8:2200

    Article  Google Scholar 

  43. Beckstead MW (1993) Pure Appl Chem 65:297

    Article  CAS  Google Scholar 

  44. Gross ML, Beckstead MW (2009) J Propul Power 25:74

    Article  CAS  Google Scholar 

  45. Gross ML, Beckstead MW (2010) Combust Flame 157:864

    Article  CAS  Google Scholar 

  46. Gross ML, Beckstead MW (2011) J Propul Power 27:1064

    Article  CAS  Google Scholar 

  47. Gross ML, Hedman TD, Son SF, Jackson TL, Beckstead MW (2013) Combust Flame 160:982

    Article  CAS  Google Scholar 

  48. Price EW, Sambamurthi JK, Sigman RK, Panyam RR (1986) Combust Flame 63:381

    Article  CAS  Google Scholar 

  49. Renie JP, Condon JA, Osborn JR (1979) AIAA J 17:877

    Article  CAS  Google Scholar 

  50. King MK (1978) Model for steady state combustion of unimodal composite solid propellants. AIAA 16th Aerospace Sciences Meeting, Huntsville, Alabama

    Google Scholar 

  51. Freeman JM, Jeenu R, Price EW, Sigman RK (1998) Effect of matrix variables on bimodal propellant combustion. In: Proceedings of the 35th JANNAF Combustion Subcommittee Meeting, Tucson, AZ

    Google Scholar 

  52. Sinditskii VP, Egorshev VY, Levshenkov AI, Serushkin VV (2005) Propellants Explos Pyrotech 30:269

    Article  CAS  Google Scholar 

  53. Parr TP, Hanson-Parr DM (1992) In: Nonsteady burning and combustion stability of solid propellants, vol 148. American Institute of Aeronautics and Astronautics, Inc., Washington, DC, p 261

    Google Scholar 

  54. Fitzgerald RP, Brewster MQ (2004) Combust Flame 136:313

    Article  CAS  Google Scholar 

  55. Fitzgerald RP, Brewster MQ (2008) Combust Flame 154:660

    Article  CAS  Google Scholar 

  56. Chorpening BT, Knott GM, Brewster MQ (2000) Proc Combust Inst 28:847

    Article  CAS  Google Scholar 

  57. Dyer MJ, Crosley DR (1982) Opt Lett 7:382

    Article  CAS  Google Scholar 

  58. Edwards T (1989) In: Air force astronautics laboratory. Edwards Air Force Base, CA

    Google Scholar 

  59. Edwards T, Weaver DP, Campbell DH (1987) Appl Opt 26:3496

    Article  CAS  Google Scholar 

  60. Isert S, Groven LJ, Lucht RP, Son SF (2015) Combust Flame 162:1821

    Article  CAS  Google Scholar 

  61. Isert S, Hedman TD, Lucht RP, Son SF (2015) Combust flame (In press)

    Google Scholar 

  62. Hedman TD, Cho KY, Satija A, Groven LJ, Lucht RP, Son SF (2012) Combust Flame 159:427

    Article  CAS  Google Scholar 

  63. Hedman TD, Groven LJ, Cho KY, Lucht RP, Son SF (2013) Proc Combust Inst 34:649

    Article  CAS  Google Scholar 

  64. Hedman TD, Groven LJ, Lucht RP, Son SF (2013) Combust Flame 160:1531

    Article  CAS  Google Scholar 

  65. Parr TP, Hanson-Parr DM (1991) Propellant diffusion flame structure. In: Proceedings of the 28th JANNAF Combustion Subcommittee Meeting, Los Alamos, NM

    Google Scholar 

  66. Parr TP, Hanson-Parr DM, Smooke MD, Yetter RA (2005) Proc Comb Inst 30:2113

    Article  Google Scholar 

  67. Smooke MD, Yetter RA, Parr TP, Hanson-Parr DM (2000) Proc Combust Inst 28:839

    Article  CAS  Google Scholar 

  68. Smooke MD, Yetter RA, Parr TP, Hanson-Parr DM, Tanoff MA, Colket MB, Hall RJ (2000) Proc Combust Inst 28:2013

    Article  CAS  Google Scholar 

  69. Tanoff MA, Ilincic N, Smooke MD, Yetter RA, Parr TP, Hanson-Parr DM (1998) Symposium (International) on combustion proceedings vol 27, p 2397

    Google Scholar 

  70. Cho KY, Satija A, Pourpoint TL, Son SF, Lucht RP (2014) Appl Opt 53:316

    Article  CAS  Google Scholar 

  71. Murphy JL, Netzer DW (1974) AIAA J 12:13

    Article  CAS  Google Scholar 

  72. Edwards T, Weaver DP, Campbell DH, Hulsizer S (1986) J Propul Power 2:228

    Article  Google Scholar 

  73. Powling J (1967) Proc Combust Inst 11:447

    Article  CAS  Google Scholar 

  74. Johansson RH (2012) Investigation of solid oxidizer and gaseous fuel combustion performance using an elevated pressure counterflow experiment and reverse hybrid rocket engine. The Pennsylvania State University, State College, PA

    Google Scholar 

  75. Johansson RH, Connell TL Jr, Risha GA, Yetter RA, Young G (2012) Int J Energ Mat Chem Propuls 11:511

    CAS  Google Scholar 

  76. Young G, Roberts C, Dunham S (2012) Combustion behavior of solid oxidizer/gaseous fuel diffusion flames. In: 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Nashville, Tennessee

    Google Scholar 

  77. Isert S, Connell TL Jr, Risha GA, Hedman TD, Lucht RP, Yetter RA, Son SF (2015) Combust flame (In press)

    Google Scholar 

  78. Varney AM, Strahle WC (1972) Combust Sci Technol 4:197

    Article  CAS  Google Scholar 

  79. Chakravarthy SR, Price EW, Sigman RK, Seitzman JM (2003) J Propul Power 19:56

    Article  CAS  Google Scholar 

  80. Knott GM, Brewster MQ (2002) Combust Sci Technol 174:61

    Article  CAS  Google Scholar 

  81. Lee S-T, Price EW, Sigman RK (1994) J Propul Power 10:761

    Article  CAS  Google Scholar 

  82. Chakravarthy SR, Seitzman JM, Price EW, Sigman RK (2004) J Propul Power 20:101

    Article  CAS  Google Scholar 

  83. Kohga M (2008) J Propul Power 24:499

    Article  CAS  Google Scholar 

  84. Lee ST, Hong SW, Yoo KH (1993) Experimental studies relating to the combustion microstructure in heterogeneous propellants. In: 29th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Monterey, CA

    Google Scholar 

  85. Chiu HH, Liu TM (1997) Combust Sci Technol 17:127

    Article  Google Scholar 

  86. Turns SR (2012) An introduction to combustion: concepts and applications. McGraw-Hill Education, New York

    Google Scholar 

  87. Bilger RW, Jia X, Li JD, Nguyen TT (1996) Combust Sci Technol 115:1

    Article  CAS  Google Scholar 

  88. Ma Z, Li F, Bai H (2006) Propellants Explos Pyrotech 31:447

    Article  CAS  Google Scholar 

  89. Cohen-Nir E (1974) Combust Sci Technol 9:183

    Article  CAS  Google Scholar 

  90. Price EW, Sigman RK, Sambamurthi JK, Park CJ (1982) Georgia institute of technology: school of aerospace engineering. Atlanta, GA

    Google Scholar 

  91. Dokhan A, Price EW, Seitzman JM, Sigman RK (2003) The ignition of ultra-fine aluminum in ammonium perchlorate solid propellant flames. In: 39th AIAA/ASME/SAE/ASEE joint propulsion conference and exhibit, Huntsville, AL

    Google Scholar 

  92. Galfetti L, De Luca LT, Severini F, Meda L, Marra G, Marchetti M, Regi M, Bellucci S (2006) J Phys Condens Matter 18:S1991

    Article  CAS  Google Scholar 

  93. De Luca LT, Galfetti L, Severini F, Meda L, Marra G, Vorozhtsov AB, Sedoi VS, Babuk VA (2005) Combust Explos Shock+ 41:680

    Google Scholar 

  94. Mullen JC, Brewster MQ (2008) Characterization of aluminum at the surface of fine-AP/HTPB composite propellants. In: 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Hartford, CT

    Google Scholar 

  95. Edwards T (1998) Air force astronautics laboratory. Edwards Air Force Base, CA

    Google Scholar 

  96. Jackson TL (2012) AIAA J 50:933

    Google Scholar 

  97. Miller RR (1982) Effects of particle size on reduced smoke propellant ballistics. In: AIAA/SAE/ASME 18th joint propulsion conference, Cleveland, OH

    Google Scholar 

  98. Jackson TL, Buckmaster J (2002) AIAA J 40:1122

    Article  CAS  Google Scholar 

  99. Stafford DS, Jackson TL (2010) J Comput Phys 229:3295

    Article  CAS  Google Scholar 

  100. Plaud M, Gallier S, Morel M (2015) Proc Comb Inst 35:2447

    Article  CAS  Google Scholar 

  101. Massa L, Jackson TL, Buckmaster J (2005) J Propul Power 21:914

    Article  Google Scholar 

  102. Gross ML, Hedman TD (2015) Int J Energ Mat Chem Propuls 14:399

    CAS  Google Scholar 

  103. Maggi F, Bandera A, De Luca LT, Thoorens V, Trubert JF, Jackson TL (2011) Prog Propuls Phys 2:81

    Article  Google Scholar 

  104. Wang X, Hossain K, Jackson TL (2008) Combust Theor Model 12:45

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven F. Son .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Isert, S., Son, S.F. (2017). The Relationship Between Flame Structure and Burning Rate for Ammonium Perchlorate Composite Propellants. In: Shukla, M., Boddu, V., Steevens, J., Damavarapu, R., Leszczynski, J. (eds) Energetic Materials. Challenges and Advances in Computational Chemistry and Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-59208-4_6

Download citation

Publish with us

Policies and ethics