Skip to main content

Toxicity and Bioaccumulation of Munitions Constituents in Aquatic and Terrestrial Organisms

  • Chapter
  • First Online:
Energetic Materials

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 25))

Abstract

Explosives and their transformation products are present in terrestrial and aquatic environments around the globe and have the potential to cause toxicity to the biota inhabiting contaminated environments. This chapter summarizes the available data on the toxicity of explosives and their transformation products to microbes, soil and aquatic invertebrates, terrestrial plants, aquatic autotrophs, and terrestrial plants, as well as data on their potential to bioaccumulate. While RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) and HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) typically remain untransformed, nitroaromatic explosives undergo fast transformation when added to soils and sediment, posing challenges when establishing concentration-response relations. The cyclic nitramines RDX and HMX typically caused no or minor adverse effects on biological receptors whereas 2,4,6-trinitrotoluene (TNT) caused lethal effects to most species investigated, in addition to sublethal effects on growth and reproduction reported for some species. Overall, nitroaromatic explosives are expected to pose greater risk to terrestrial and aquatic biota at contaminated sites compared to nitramine explosives. The toxicity of other explosives compounds was also summarized. As predicted mainly on the basis of their low hydrophobicity, bioaccumulation studies confirmed the low potential of explosives to accumulate in plants, fish, and invertebrates.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monteil-Rivera F, Halasz A, Groom C, Zhao JS, Thiboutot S, Ampleman G, Hawari J (2009) Fate and transport of explosives in the environment. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  2. Lewis J, Martel R, Trepanier L, Ampleman G, Thiboutot S (2009) Quantifying the transport of energetic materials in unsaturated sediments from cracked unexploded ordnance. J Environ Qual 38:2229–2236

    Article  CAS  Google Scholar 

  3. Taylor S, Bigl S, Packer B (2015) Condition of in situ unexploded ordnance. Sci Total Environ 505:762–769

    Article  CAS  Google Scholar 

  4. Voie ØA, Mariussen E (2016) Risk assessment of sea dumped conventional munitions. Prop. Explos, Pyrot In Press

    Google Scholar 

  5. Carton G, Jagusiewicz A (2009) Historic disposal of munitions in US and European coastal waters, how historic information can be used in characterizing and managing risk. Mar Technol Soc J 43:16–32

    Article  Google Scholar 

  6. Jenkins TF, Pennington JC, Ranney TA, Berry TE, Miyares PH, Walsh ME (2001) Characterization of explosives contamination at military firing ranges. ERDC TR-01-5. US Army Engineer Research and Development Center, Hanover, NH

    Google Scholar 

  7. Simini M, Wentsel RS, Checkai RT, Phillips CT, Chester NA, Majors MA, Amos JC (1995) Evaluation of soil toxicity at joliet army ammunition plant. Environ Toxicol Chem 14:623–630

    Article  CAS  Google Scholar 

  8. Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB (1999) Nitroaromatic munition compounds: environmental effects and screening values. Rev Environ Contam Toxicol 161:1–156

    CAS  Google Scholar 

  9. Pichtel J (2012) Distribution and fate of military explosives and propellants in soil: a review. Appl Environ Soil Sci 2012:33p

    Article  CAS  Google Scholar 

  10. Kuperman RG, Checkai RT, Simini M, Phillips CT, Kolakowski JE, Lanno R (2013) Soil properties affect the toxicities of 2,4,6-trinitrotoluene (TNT) and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the enchytraeid worm Enchytraeus crypticus. Environ Toxicol Chem 32:2648–2659

    CAS  Google Scholar 

  11. Williams M, Reddy G, Quinn M, Johnson M (2015) Wildlife toxicity assessments for chemicals of military concern. Elsevier Inc., Oxford, UK

    Google Scholar 

  12. Kuperman RG, Simini M, Siciliano S, Gong P (2009) Effects of energetic materials on soil organisms. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  13. Lotufo GR, Rosen G, Wild W, Carton G (2013) Summary review of the aquatic toxicology of munitions constituents. ERDC/EL TR-13-8. US Army Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  14. Lotufo GR, Nipper M, Carr RS, Conder JM (2009) Fate and toxicity of explosives in sediment. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  15. Lotufo GR, Lydy MJ, Rorrer GL, Cruz-Uribe O, Cheney DP (2009) Bioconcentration, bioaccumulation and biotransformation of explosives and related compounds in aquatic organisms. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  16. Chappell MA, Price CL, Miller LF (2011) Solid-phase considerations for the environmental fate of nitrobenzene and triazine munition constituents in soil. Appl Geochem 26:S330–S333

    Article  CAS  Google Scholar 

  17. Duncan K (2002) Insensitive munitions and the army: improving safety and survivability. Army Logistician 34:16–17

    Google Scholar 

  18. Gong P, Siciliano SD, Greer CW, Paquet L, Hawari J, Sunahara GI (1999) Effects and bioavailability of 2,4,6-trinitrotoluene in spiked and field-contaminated soils to indigenous microorganisms. Environ Toxicol Chem 18:2681–2688

    Article  CAS  Google Scholar 

  19. Gong P, Gasparrini P, Rho D, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2000) An in situ respirometric technique to measure pollution-induced microbial community tolerance in soils contaminated with 2,4,6-trinitrotoluene. Ecotoxicol Environ Saf 47:96–103

    Article  CAS  Google Scholar 

  20. Meyers SK, Deng SP, Basta NT, Clarkson WW, Wilber GG (2007) Long-term explosive contamination in soil: effects on soil microbial community and bioremediation. Soil Sed Contam 16:61–77

    CAS  Google Scholar 

  21. Fuller ME, Manning JF (1998) Evidence for differential effects of 2,4,6-trinitrotoluene and other munitions compounds on specific subpopulations of soil microbial communities. Environ Toxicol Chem 17:2185–2195

    Article  CAS  Google Scholar 

  22. George IF, Liles MR, Hartmann M, Ludwig W, Goodman RM, Agathos SN (2009) Changes in soil acidobacteria communities after 2,4,6-trinitrotoluene contamination. FEMS Microbiol Lett 296:159–166

    Article  CAS  Google Scholar 

  23. Liang J, Olivares C, Field JA, Sierra-Alvarez R (2013) Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater 262:281–287

    Article  CAS  Google Scholar 

  24. Anderson JAH, Canas JE, Long MK, Zak JC, Cox SB (2010) Bacterial community dynamics in high and low bioavailability soils following laboratory exposure to a range of hexahydro-1,3,5-trinitro-1,3,5-triazine concentrations. Environ Toxicol Chem 29:38–44

    Article  CAS  Google Scholar 

  25. Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2001) Ecotoxicological effects of hexahydro-1,3,5-trinitro-1,3,5-triazine on soil microbial activities. Environ Toxicol Chem 20:947–951

    Article  CAS  Google Scholar 

  26. Gong P, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2002) Toxicity of octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) to soil microbes. Bull Environ Contam Toxicol 69:97–103

    Article  CAS  Google Scholar 

  27. Gong P, Sunahara GI, Rocheleau S, Dodard SG, Robidoux PY, Hawari J (2004) Preliminary ecotoxicological characterization of a new energetic substance, CL-20. Chemosphere 56:653–658

    Article  CAS  Google Scholar 

  28. Juck D, Driscoll BT, Charles TC, Greer CW (2003) Effect of experimental contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine on soil bacterial communities. FEMS Microbiol Ecol 43:255–262

    Article  CAS  Google Scholar 

  29. Sunahara GI, Robidoux PY, Gong P, Lachance B, Rocheleau S, Dodard S, Sarrazin M, Hawari J, Thiboutot S, Ampleman G, Renoux AY (2001) Laboratory and field approaches to characterize the soil ecotoxicology of polynitro explosives. In: Greenberg BM, Hull RN, Roberts MHJ, Gensemer RW (eds) Environmental toxicology and risk assessment ASTM. West Conshohocken, PA

    Google Scholar 

  30. Best EPH, Geter KN, Tatem HE, Lane BK (2006) Effects, transfer, and fate of RDX from aged soil in plants and worms. Chemosphere 62:616–625

    Article  CAS  Google Scholar 

  31. Best EPH, Tatem HE, Geter KN, Wells ML, Lane BK (2008) Effects, uptake, and fate of 2,4,6-trinitrotoluene aged in soil in plants and worms. Environ Toxicol Chem 27:2539–2547

    Article  CAS  Google Scholar 

  32. Dodard SG, Renoux AY, Powlowski J, Sunahara GI (2003) Lethal and subchronic effects of 2,4,6-trinitrotoluene (TNT) on Enchytraeus albidus in spiked artificial soil. Ecotoxicol Environ Saf 54:131–138

    Article  CAS  Google Scholar 

  33. Kuperman RG, Checkai RT, Simini M, Phillips CT, Kolakowski JE, Kurnas CW (2005) Weathering and aging of 2,4,6-Trinitrotoluene in soil increases toxicity to potworm Enchytraeus crypticus. Environ Toxicol Chem 24:2509–2518

    Article  CAS  Google Scholar 

  34. Panz K, Miksch K, Sojka T (2013) Synergetic toxic effect of an explosive material mixture in soil. Bull Environ Contam Toxicol 91:555–559

    Article  CAS  Google Scholar 

  35. Robidoux PY, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (1999) Acute toxicity of 2,4,6-trinitrotoluene in earthworm (Eisenia andrei). Ecotoxicol Environ Saf 44:311–321

    Article  CAS  Google Scholar 

  36. Robidoux PY, Svendsen C, Caumartin J, Hawari J, Ampleman G, Thiboutot S, Weeks JM, Sunahara GI (2000) Chronic Toxicity of energetic compounds in soil determined using the earthworm (Eisenia andrei) reproduction test. Environ Toxicol Chem 19:1764–1773

    Article  CAS  Google Scholar 

  37. Robidoux PY, Hawari J, Bardai G, Paquet L, Ampleman G, Thiboutot S, Sudahara GI (2002) TNT, RDX, and HMX decrease earthworm (Eisenia andrei) life-cycle responses in a spiked natural forest soil. Arch Environ Contam Toxicol 43:379–388

    Article  CAS  Google Scholar 

  38. Robidoux PY, Svendsen C, Sarrazin M, Thiboutot S, Ampleman G, Hawari J, Weeks JM, Sunahara GI (2005) Assessment of a 2,4,6-trinitrotoluene-contaminated site using Aporrectodea rosea and Eisenia andrei in mesocosms. Arch Environ Contam Toxicol 48:56–67

    Article  CAS  Google Scholar 

  39. Schafer R, Achazi RK (1999) The Toxicity of soil samples containing TNT and other ammunition derived compounds in the enchytraeid and collembola-biotest. Environ Sci Pollut R 6:213–219

    Article  CAS  Google Scholar 

  40. Lachance B, Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2004) Toxicity and bioaccumulation of reduced TNT metabolites in the earthworm Eisenia andrei exposed to amended forest soil. Chemosphere 55:1339–1348

    Article  CAS  Google Scholar 

  41. Kuperman RG, Checkai RT, Simini M, Phillips CT, Anthony JS, Kolakowski JE, Davis EA (2006) toxicity of emerging energetic soil contaminant CL-20 to Potworm Enchytraeus crypticus in freshly amended or weathered and aged treatments. Chemosphere 62:1282–1293

    Article  CAS  Google Scholar 

  42. Dodard SG, Sarrazin M, Hawari J, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2013) Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN). J Hazard Mater 262:143–150

    Article  CAS  Google Scholar 

  43. Dodard SG, Sunahara GI, Kuperman RG, Sarrazin M, Gong P, Ampleman G, Thiboutot S, Hawari J (2005) Survival and reproduction of enchytraeid worms, oligochaeta, in different soil types amended with energetic cyclic nitramines. Environ Toxicol Chem 24:2579–2587

    Article  CAS  Google Scholar 

  44. Kuperman RG, Checkai RT, Simini M, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI (2003) Survival and reproduction of Enchytraeus crypticus (Oligochaeta, Enchytraeidae) in a natural sandy loam soil amended with the nitro-heterocyclic explosives RDX and HMX. Pedobiologia 47:651–656

    CAS  Google Scholar 

  45. Schafer R, Achazi R (2004) Toxicity of Hexyl to F. candida and E. crypticus. J Soils Sed 4:157–162

    Article  Google Scholar 

  46. Robidoux PY, Sunahara GI, Savard K, Berthelot Y, Dodard SG, Martel M, Gong P, Hawari J (2004) Acute and chronic toxicity of the new explosive CL-20 to the earthworm (Eisenia andrei) exposed to amended natural soils. Environ Toxicol Chem 23:1026–1034

    Article  CAS  Google Scholar 

  47. Kuperman RG, Checkai RT, Simini M, Phillips CT, Kolakowski JE, Kurnas CW (2006) Toxicities of dinitrotoluenes and trinitrobenzene freshly amended or weathered and aged in a sandy loam soil to Enchytraeus crypticus. Environ Toxicol Chem 25:1368–1375

    Article  CAS  Google Scholar 

  48. Simini M, Checkai RT, Kuperman RG, Phillips CT, Kolakowski JE, Kurnas CW, Sunahara GI (2003) Reproduction and survival of Eisenia fetida in a sandy loam soil amended with the nitro-heterocyclic explosives RDX and HMX. Pedobiologia 47:657–662

    CAS  Google Scholar 

  49. Huang Q, Liu BR, Hosiana M, Guo X, Wang TT, Gui MY (2016) Bioavailability of 2,4,6-trinitrotoluene (TNT) to earthworms in three different types of soils in China. Soil Sediment Contam 25:38–49

    Google Scholar 

  50. Via SM, Zinnert JC (2016) Impacts of explosive compounds on vegetation: a need for community scale investigations. Environ Pollut 208:495–505

    Article  CAS  Google Scholar 

  51. Gong P, Wilke BM, Fleischmann S (1999) Soil-based phytotoxicity of 2,4,6-Trinitrotoluene (TNT) to terrestrial higher plants. Arch Environ Contam Toxicol 36:152–157

    Article  CAS  Google Scholar 

  52. Krishnan G, Horst GL, Darnell S, Powers WL (2000) Growth and development of smooth bromegrass and tall fescue in TNT-contaminated soil. Environ Pollut 107:109–116

    Article  CAS  Google Scholar 

  53. Palazzo AJ, Leggett DC (1986) Effect and disposition of TNT in a terrestrial plant. J Environ Qual 15:49–52

    Article  CAS  Google Scholar 

  54. Palazzo AJ, Leggett DC (1986) Effect and disposition of TNT in a terrestrial plant and validation of analytical methods. CRREL-86-15. Cold Regions Research and Engineering Lab Hanover, NH

    Google Scholar 

  55. Peterson MM (1996) TNT and 4-Amino-2,6-dinitrotoluene influence on germination and early seedling development of tall fescue. Environ Pollut 93:57–62

    Article  CAS  Google Scholar 

  56. Peterson MM, Horst GL, Shea PJ, Comfort SD (1998) Germination and seedling development of switchgrass and smooth bromegrass exposed to 2,4,6-trinitrotoluene. Environ Pollut 99:53–59

    Article  CAS  Google Scholar 

  57. Robidoux PY, Bardai G, Paquet L, Ampleman G, Thiboutot S, Hawari J, Sunahara GI (2003) Phytotoxicity of 2,4,6-trinitrotoluene (TNT) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in spiked artificial and natural forest soils. Arch Environ Contam Toxicol 44:198–209

    Article  CAS  Google Scholar 

  58. Rocheleau S, Kuperman RG, Martel M, Paquet L, Bardai G, Wong S, Sarrazin M, Dodard S, Gong P, Hawari J, Checkai RT, Sunahara GI (2006) Phytotoxicity of nitroaromatic energetic compounds freshly amended or weathered and aged in sandy loam soil. Chemosphere 62:545–558

    Article  CAS  Google Scholar 

  59. Picka K, Friedl Z (2004) Phytotoxicity of some toluene nitroderivatives and products of their reduction. Fresenius Environ Bull 13:789–794

    Google Scholar 

  60. Vila M, Lorber-Pascal S, Laurent F (2008) Phytotoxicity to and uptake of TNT by rice. Environ Geochem Health 30:199–203

    Google Scholar 

  61. Naumann JC, Anderson JE, Young DR (2010) Remote detection of plant physiological responses to TNT soil contamination. Plant Soil 329:239–248

    Article  CAS  Google Scholar 

  62. Via SM, Zinnert JC, Butler AD, Young DR (2014) Comparative physiological responses of Morella cerifera to RDX, TNT, and composition B contaminated soils. Environ Exper Bot 99:67–74

    Article  CAS  Google Scholar 

  63. Via SM, Zinnert JC, Young DR (2015) Differential effects of two explosive compounds on seed germination and seedling morphology of a woody shrub, Morella cerifera. Ecotoxicology 24:194–201

    Article  CAS  Google Scholar 

  64. Zinnert JC (2012) Plants as phytosensors: physiological responses of a woody plant in response to RDX exposure and potential for remote detection. Int J Plant Sci 173:1005–1014

    Article  CAS  Google Scholar 

  65. Rocheleau S, Lachance B, Kuperman RG, Hawari J, Thiboutot S, Ampleman G, Sunahara GI (2008) Toxicity and uptake of cyclic nitrarnine explosives in ryegrass Lolium perenne. Environ Pollut 156:199–206

    Article  CAS  Google Scholar 

  66. Winfield LE, Rodgers JH, D’Surney SJ (2004) The responses of selected terrestrial plants to short (<12 days) and long term (2, 4 and 6 weeks) hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) exposure. Part I: growth and developmental effects. Ecotoxicology 13:335–347

    Article  CAS  Google Scholar 

  67. Rocheleau S, Kuperman RG, Dodard SG, Sarrazin M, Savard K, Paquet L, Hawari J, Checkai RT, Thiboutot S, Ampleman G, Sunahara GI (2011) Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil. Sci Total Environ 409:5284–5291

    Article  CAS  Google Scholar 

  68. Nipper M, Carr RS, Lotufo GR (2009) Aquatic toxicology of explosives. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  69. Dodard SG, Renoux AY, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (1999) Ecotoxicity characterization of dinitrotoluenes and some of their reduced metabolites. Chemosphere 38:2071–2079

    Article  CAS  Google Scholar 

  70. Liu DH, Spanggord RJ, Bailey HC, Javitz HS, Jones DCL (1983c) Toxicity of TNT wastewaters to aquatic organisms. Final report. Vol. I. Acute toxicity of LAP wastewater and 2,4,6-trinitrotoluene. AD A142144. SRI International, Menlo Park, CA

    Google Scholar 

  71. Sunahara GI, Dodard S, Sarrazin M, Paquet L, Ampleman G, Thiboutot S, Hawari J, Renoux AY (1998) Development of a soil extraction procedure for ecotoxicity characterization of energetic compounds. Ecotoxicol Environ Saf 39:185–194

    Google Scholar 

  72. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K, Saepoff S (2001) Development of marine toxicity data for ordnance compounds. Arch Environ Contam Toxicol 41:308–318

    Article  CAS  Google Scholar 

  73. Burton DT, Turley SD, Peters GT (1994) The toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) to the freshwater green alga Selenastrum capricornutum. Water Air Soil Pollut 76:449–457

    Article  CAS  Google Scholar 

  74. Bentley RE, Leblanc GA, Hollister TA, Sleight BH (1977) Laboratory evaluation of the toxicity of nitrocellulose to aquatic organisms. AD A037749. US Army Medical Research and Development Command, Washington, DC

    Google Scholar 

  75. Bringmann G, Kuhn R (1978) Testing of substances for their toxicity threshold: model organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricauda. Mitt Int Ver Theor Angew Limnol 21:275–284

    Google Scholar 

  76. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K (2005) Fate and effects of picric acid and 2,6-DNT in marine environments: Toxicity of degradation products. Mar Pollut Bull 50:1205–1217

    Article  CAS  Google Scholar 

  77. Bentley RE, Dean JW, Ellis SJ, Leblanc GA, Sauter S, Buxter KS, Sleight BH (1978) Laboratory evaluation of the toxicity of nitroglycerine to aquatic organisms. AD-A061739 ed

    Google Scholar 

  78. Burton DT, Turley SD, Peters GT (1993) Toxicity of nitroguanidine, nitroglycerin, hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT) to selected freshwater aquatic organisms report. AD A267467). The University of Maryland, Agricultural Experiment Station. Queenstown, MD

    Google Scholar 

  79. van der Schalie WH (1985) The toxicity of nitroguanidine and photolyzed nitroguanidine to freshwater aquatic organisms. Technical report 8404. AD-A153045. US Army Medical Bioengineering Research and Development Laboratory, Fredrick, MD

    Google Scholar 

  80. Juhasz AL, Naidu R (2007) Explosives: fate, dynamics, and ecological impact in terrestrial and marine environments. Rev Environ Contam Toxicol 191:163–215

    CAS  Google Scholar 

  81. Paden NE, Smith EE, Maul JD, Kendall RJ (2011) Effects of chronic 2,4,6,-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene exposure on developing bullfrog (Rana catesbeiana) tadpoles. Ecotoxicol Environ Saf 74:924–928

    Article  CAS  Google Scholar 

  82. Saka M (2004) Developmental toxicity of p, p′-dichlorodiphenyltrichloroethane, 2,4,6-trinitrotoluene, their metabolites, and benzo[a]pyrene in Xenopus laevis embryos. Environ Toxicol Chem 23:1065–1073

    Article  CAS  Google Scholar 

  83. Stanley JK, Lotufo GR, Biedenbach JM, Chappell P, Gust KA (2015) Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34:873–879

    Article  CAS  Google Scholar 

  84. Bailey HC, Spanggord RJ, Javitz HS, Liu DH (1985) Toxicity of TNT wastewaters to aquatic organisms. Final report, vol III. Chronic toxicity of LAP wastewater and 2,4,6-Trinitrotoluene. AD-A164 282. SRI international, Menlo Park, CA

    Google Scholar 

  85. Pearson JG, Glennon JP, Barkley JJ, Highfill JW (1979) An Approach to the Toxicological Evaluation of a Complex Industrial Wastewater. In: Marking LL, Kimerle RA (eds) Aquatic toxicology and hazard assessment: sixth symposium, ASTM STP, 667th edn. American Society for Testing Materials, Philadelphia, PA

    Google Scholar 

  86. Lotufo GR, Blackburn W, Gibson AB (2010) Toxicity of trinitrotoluene to sheepshead minnows in water exposures. Ecotoxicol Environ Saf 73:718–726

    Article  CAS  Google Scholar 

  87. Liu DH, Bailey HC, Pearson JG (1983a) Toxicity of a complex munitions wastewater to aquatic organism. In: Bishop WE, Cardwell RD, Heidolph BB (eds) Aquatic toxicology and hazard assessment: sixth symposium, ASTM STP 802. American Society for Testing Materials, Philadelphia, PA

    Google Scholar 

  88. Yoo LJ, Lotufo GR, Gibson AB, Steevens JA, Sims JG (2006) Toxicity and bioaccumulation of 2,4,6-trinitrotoluene in fathead minnow (Pimephales promelas). Environ Toxicol Chem 25:3253–3260

    Article  CAS  Google Scholar 

  89. Liu DH, Spanggord RJ, Bailey HC, Javitz HS, Jones DCL (1983b) Toxicity of TNT wastewaters to aquatic organisms. Final report. VoI. II. Acute toxicity of condensate wastewater and 2,4-dinitrotoluene. DSU-4262. SRI International, Menlo Park, CA

    Google Scholar 

  90. van der Schalie WH (1983) The acute and chronic toxicity of 3,5-dinitroaniline, 1,3-dinitrobenene, and 1,3,5-trinitrobenzene to freshwater aquatic organisms. Technical Report 8305. U.S. Army Medical Bioengineering Research and Development Laboratory, Fort Derick, MD

    Google Scholar 

  91. Broderius SJ, Kahl MD, Elonen GE, Hammermeister DE, Hoglund MD (2005) A comparison of the lethal and sublethal toxicity of organic chemical mixtures to the fathead minnow (Pimephales promelas). Environ Toxicol Chem 24:3117–3127

    Google Scholar 

  92. Bentley RE, Leblanc GA, Hollister TA, Sleight BH (1977) Acute toxicity of -1,3,5,7-tetranitro-octahydro-1,3,5,7-tetrazocine (HMX) to aquatic organisms. Final report. AD A061 730. EG & G Bionomics, Wareham, MA

    Google Scholar 

  93. Lotufo GR, Gibson AB, Leslie YJ (2010) b Toxicity and bioconcentration evaluation of RDX and HMX using sheepshead minnows in water exposures. Ecotoxicol Environ Saf 73:1653–1657

    Article  CAS  Google Scholar 

  94. Mukhi S, Pan XP, Cobb GP, Patino R (2005) Toxicity of hexahydro-1,3,5-trinitro-1,3,5-triazine to larval zebrafish (Danio rerio). Chemosphere 61:178–185

    Article  CAS  Google Scholar 

  95. Goodfellow WL Jr, Burton DT, Graves WC, Hall LW Jr, Cooper KR (1983) Acute toxicity of picric acid and picramic acid to rainbow trout, Salmo gairdneri, and American oyster, Crassostrea virginica. Water Resour Bull 19:641–648

    Article  CAS  Google Scholar 

  96. Fisher DJ, Burton DT, Paulson RL (1989) Comparative acute toxicity of diethyleneglycol dinitrate to freshwater aquatic organisms. Environ Toxicol Chem 8:545–550

    Article  CAS  Google Scholar 

  97. Kennedy AJ, Laird JG, Lounds C, Gong P, Barker ND, Brasfield SM, Russell AL, Johnson MS (2015) Inter- and intraspecies chemical sensitivity: a case study using 2,4-dinitroanisole. Environ Toxicol Chem 34:402–411

    Article  CAS  Google Scholar 

  98. Mukhi S, Patino R (2008) Effects of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in zebrafish: general and reproductive toxicity. Chemosphere 72:726–732

    Article  CAS  Google Scholar 

  99. Warner CM, Gust KA, Stanley JK, Habib T, Wilbanks MS, Garcia-Reyero N, Perkins EJ (2012) A systems toxicology approach to elucidate the mechanisms involved in RDX species-specific sensitivity. Environ Sci Technol 46:7790–7798

    Article  CAS  Google Scholar 

  100. Bentley RE, Petrocelli SR, Suprenant DC (1984) Determination of the toxicity to aquatic organisms of HMX and related wastewater constituents. Part III. Toxicity of HMX, TAX and SEX to aquatic organisms. Final report. AD A172 385. Springborn Biomomics, Wareham, MD

    Google Scholar 

  101. Conder JM, Lotufo GR, Turner PK, La Point TW, Steevens JA (2004) Solid phase microextraction fibers for estimating the toxicity and bioavailability of sediment-associated organic compounds. Aquat Ecosyst Health Manag 7:387–397

    Article  CAS  Google Scholar 

  102. Dave G, Nilsson E, Wernersson A-S (2000) Sediment and water phase toxicity and UV-activation of six chemicals used in military explosives. Aquat. Ecosyst. Health Manag 3:291–299

    CAS  Google Scholar 

  103. Griest WH, Vass AA, Stewart AJ, Ho CH (1998) Chemical and toxicological characterization of slurry reactor biotreatment of explosives-contaminated soils. Technical report SFIM-AEC-ETCR-96186. U.S. Army Environmental Center, Aberdeen, MD

    Google Scholar 

  104. Sims JG, Steevens JA (2008) The role of metabolism in the toxicity of 2,4,6-trinitrotoluene and its degradation products to the aquatic amphipod Hyalella azteca. Ecotoxicol Environ Saf 70:38–46

    Article  CAS  Google Scholar 

  105. Snell TW, Moffat BD (1992) A 2-d life cycle test with the totifer Brachionus calyciflorus. Environ Toxicol Chem 11:1249–1257

    Article  CAS  Google Scholar 

  106. Davenport R, Johnson LR, Schaeffer DJ, Balbach H (1994) Phototoxicology. 1. Light-enhanced toxicity of TNT and some related compounds to Daphnia magna and Lytechinus variagatus embryos. Ecotoxicol Environ Saf 27:14–22

    Article  CAS  Google Scholar 

  107. Rosen G, Lotufo GR (2007) Bioaccumulation of explosive compounds in the marine mussel, Mytilus galloprovincialis. Ecotoxicol Environ Saf 68:237–245

    Article  CAS  Google Scholar 

  108. Won WD, DiSalvo LH, Ng J (1976) Toxicity and mutagenicity of 2,4,6-trinitrotoluene and its microbial metabolites. Appl Environ Microbiol 31:576–580

    CAS  Google Scholar 

  109. Gust KA, Najar FZ, Habib T, Lotufo GR, Piggot AM, Fouke BW, Laird JG, Wilbanks MS, Rawat A, Indest KJ, Roe BA, Perkins EJ (2014) Coral-zooxanthellae meta-transcriptomics reveals integrated response to pollutant stress. BMC Genom 15:591

    Article  Google Scholar 

  110. Rosen G, Lotufo GR (2007) Toxicity of explosive compounds to the marine mussel, Mytilus galloprovincialis, in aqueous exposures. Ecotoxicol Environ Saf 68:228–236

    Article  CAS  Google Scholar 

  111. Toussaint MW, Shedd TR, van der Schalie WH, Leather GR (1995) A comparison of standard acute toxicity tests with rapid‐screening toxicity tests. Environ Toxicol Chem 14(5):907–915

    Google Scholar 

  112. Conder JM, La Point TW, Steevens JA, Lotufo GR (2004) Recommendations for the assessment of TNT toxicity in sediment. Environ Toxicol Chem 23:141–149

    Article  CAS  Google Scholar 

  113. Johnson LR, Davenport R, Balbach H, Schaeffer DJ (1994) Phototoxicology. 3. Comparative toxicity of trinitrotoluene and aminodinitrotoluenes to Daphnia magna, Dugesia dorotocephala, and sheep erythrocytes. Ecotoxicol Environ Saf 27:34–49

    Article  CAS  Google Scholar 

  114. Deneer JW, Seinen W, Hermens JL (1988) Growth of Daphnia magna exposed to mixtures of chemicals with diverse modes of action. Ecotoxicol Environ Saf 15:72–77

    Google Scholar 

  115. Liu DH, Spanggord RJ, Bailey HC (1976) Toxicity of TNT wastewater (pink water) to aquatic organisms. ADA0310. US Army Medical Research and Development Command, Washington, DC

    Google Scholar 

  116. LeBlanc GA (1980) Acute toxicity of priority pollutants to water flea (Daphnia magna). Bull Environ Contam Toxicol 24:684–691

    Article  CAS  Google Scholar 

  117. Haley MV, Kuperman RG, Checkai RT (2009) Aquatic toxicity of 3-Nitro-1,2,4-Triazol-5-one. ECBC-TR-726. US Army Research, Development and Engineering Command, Edgewood Chemical Biological Center, Aberdeen Proving Ground, MD

    Google Scholar 

  118. Bentley RE, Dean JW, Ellis SJ, Hollister TA, Leblanc GA, Sauter S, Sleight BH (1977) Laboratory evaluation of the toxicity of cyclotrimethylene trinitramine (RDX) to aquatic organisms. ADA 061730. US Army Medical Bioengineering Research and Development Laboratory, Fort Detrick, MD

    Google Scholar 

  119. Rosenblatt DH, Burrows EP, Mitchell WR, Parmer DL (1991) Organic explosives and related compounds. In: Huntzinger O (ed) The handbook of environmental chemistry—anthropogenic compounds, vol 3 Part G. Springer, Berlin

    Google Scholar 

  120. Peters GT, Burton DT, Paulson RL, Turley SD (1991) The acute and chronic toxicity of hexahydro-1,3,5-trinitro-1,3,5-traizine (RDX) to three freshwater invertebrates. Environ Toxicol Chem 10:1073–1081

    Google Scholar 

  121. Burton DT, Turley SD (1995) Reduction of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) toxicity to the cladoceran Ceriodaphnia dubia following photolysis in sunlight. Bull Environ Contam Toxicol 55:89–95

    Article  CAS  Google Scholar 

  122. Dave G (2003) Field test of ammunition (TNT) dumping in the ocean. In: M Munawar (ed) Quality assessment and management: insight and progress. Aquatic Ecosyst Health Manag Soc 213–220

    Google Scholar 

  123. Lotufo GR, Farrar JD, Inouye LS, Bridges TS, Ringelberg DB (2001) Toxicity of sediment-associated nitroaromatic and cyclonitramine compounds to benthic invertebrates. Environ Toxicol Chem 20:1762–1771

    Article  CAS  Google Scholar 

  124. Lotufo GR, Blackburn W, Marlborough SJ, Fleeger JW (2010) Toxicity and bioaccumulation of TNT in marine fish in sediment exposures. Ecotoxicol Environ Saf 73:1720–1727

    Article  CAS  Google Scholar 

  125. Nipper M, Qian Y, Carr RS, Miller K (2004) Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role of microbial activity and ultra-violet exposure. Chemosphere 56:519–530

    Article  CAS  Google Scholar 

  126. Rosen G, Lotufo GR (2005) Toxicity and fate of two munitions constituents in spiked sediment exposures with the marine amphipod Eohaustorius estuarius. Environ Toxicol Chem 24:2887–2897

    Article  CAS  Google Scholar 

  127. Steevens JA, Duke BM, Lotufo GR, Bridges TS (2002) Toxicity of the explosives 2,4,6-trinitrotoluene, hexahydro-1,3,5-trinitro-1,3,5-triazine, and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine in sediments to Chironomus tentans and Hyalella azteca: Low-dose hormesis and high-dose mortality. Environ Toxicol Chem 21:1475–1482

    Article  CAS  Google Scholar 

  128. Lotufo GR, Farrar JD (2005) Comparative and mixture sediment toxicity of trinitrotoluene and its major transformation products to a freshwater midge. Arch Environ Contam Toxicol 49:333–342

    Google Scholar 

  129. Nipper M, Carr RS, Biedenbach JM, Hooten RL, Miller K (2002) Toxicological and chemical assessment of ordnance compounds in marine sediments and porewaters. Mar Pollut Bull 44:789–806

    Article  CAS  Google Scholar 

  130. Pascoe GA, Kroeger K, Leisle D, Feldpausch RJ (2010) Munition constituents: Preliminary sediment screening criteria for the protection of marine benthic invertebrates. Chemosphere 81:807–816

    Article  CAS  Google Scholar 

  131. Green AS, Moore DW, Farrar D (1999) Chronic toxicity of 2,4,6-trinitrotoluene to a marine polychaete and an estuarine amphipod. Environ Toxicol Chem 18:1783–1790

    Article  CAS  Google Scholar 

  132. Johnson MS, Salice CJ, Sample BE, Robidoux PY (2009) Bioconcentration, bioaccumulation, and biomagnification of nitroaromatic and nitramine explosives in terrestrial systems. In: Sunahara GI, Lotufo GR, Kuperman RG, Hawari J (eds) Ecotoxicology of explosives. CRC Press, Boca Raton, FL

    Google Scholar 

  133. Dodard SG, Powlowski J, Sunahara GI (2004) Biotransformation of 2,4,6-trinitrotoluene (TNT) by enchytraeids (Enchytraeus albidus) in vivo and in vitro. Environ Pollut 131:263–273

    Article  CAS  Google Scholar 

  134. Renoux AY, Sarrazin M, Hawari J, Sunahara GI (2000) Transformation of 2,4,6-trinitrotoluene in soil in the presence of the earthworm Eisenia andrei. Environ Toxicol Chem 19:1473–1480

    Article  CAS  Google Scholar 

  135. Belden JB, Lotufo GR, Chambliss CK, Fisher JC, Johnson DR, Boyd RE, Sims JG (2011) Accumulation of 14C-trinitrotoluene and related nonextractable (bound) residues in Eisenia fetida. Environ Pollut 159:1368

    Article  CAS  Google Scholar 

  136. Sarrazin M, Dodard SG, Savard K, Lachance B, Robidoux PY, Kuperman RG, Hawari J, Ampleman G, Thiboutot S, Sunahara GI (2009) Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine by the earthworm Eisenia andrei in a sandy loam soil. Environ Toxicol Chem 28:2125–2133

    Article  CAS  Google Scholar 

  137. Savard K, Sarrazin M, Dodard SG, Monteil-Rivera F, Kuperman RG, Hawari J, Sunahara GI (2010) Role of soil interstitial water in the accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine in the earthworm Eisenia andrei. Environ Toxicol Chem 29:998–1005

    Article  CAS  Google Scholar 

  138. Lotufo GR, Farrar JD, Biedenbach JM, Laird JG, Krasnec MO, Lay C, Morris JM, Gielazyn ML (2016) Effects of sediment amended with deepwater horizon incident slick oil on the infaunal amphipod Leptocheirus plumulosus. Mar Pollut Bull 109:253–258

    Article  CAS  Google Scholar 

  139. Lotufo GR, Coleman JG, Harmon AR, Chappell MA, Bednar AJ, Russell AL, Smith JC, Brasfield SM (2016) Accumulation of 2,4-dinitroanisole in the earthworm Eisenia fetida from chemically spiked and aged natural soils. Environ Toxicol Chem 35:1835–1842

    Article  CAS  Google Scholar 

  140. Lotufo GR, Belden JB, Fisher JC, Chen SF, Mowery RA, Chambliss CK, Rosen G (2016) Accumulation and depuration of trinitrotoluene and related extractable and nonextractable (bound) residues in marine fish and mussels. Environ Pollut 210:129–136

    Article  CAS  Google Scholar 

  141. Brentner LB, Mukherji ST, Walsh SA, Schnoor JL (2010) Localization of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) and 2,4,6-trinitrotoluene (TNT) in poplar and switchgrass plants using phosphor imager autoradiography. Environ Pollut 158:470–475

    Article  CAS  Google Scholar 

  142. Schneider K, Oltmanns J, Radenberg T, Schneider T, Pauly-Mundegar D (1996) Uptake of nitroaromatic compounds in plants. Environ Sci Pollut R 3:135–138

    Article  CAS  Google Scholar 

  143. Vila M, Lorber-Pascal S, Laurent F (2007) Fate of RDX and TNT in agronomic plants. Environ Pollut 148:148–154

    Article  CAS  Google Scholar 

  144. Chen D, Liu Z, Banwart W (2011) Concentration-dependent RDX uptake and remediation by crop plants. Environ Sci Pollut Res 18:908–917

    Article  CAS  Google Scholar 

  145. Price RA, Pennington JC, Larson SL, Neumann D, Hayes CA (2002) Uptake of RDX and TNT by agronomic plants. Soil Sed Contam 11:307–326

    CAS  Google Scholar 

  146. Schoenmuth B, Mueller JO, Scharnhorst T, Schenke D, Buttner C, Pestemer W (2014) Elevated root retention of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coniferous trees. Environ Sci Pollut R 21:3733–3743

    Article  CAS  Google Scholar 

  147. Groom CA, Halasz A, Paquet L, Olivier L, Dubois C, Hawari J (2002) Accumulation of HMX (octahydro-1,3,5,7-tetranitri-1,3,5,7-tetrazocine) in indigenous and agricultural plants grown in HMX-contaminated anti-tank firing-range soil. Environ Sci Technol 36:112–118

    Article  CAS  Google Scholar 

  148. Yoon JM, Van Aken B, Schnoor JL (2006) Leaching of contaminated leaves following uptake and phytoremediation of RDX, HMX, and TNT by Poplar. Int J Phytoremediat 8:81–94

    Article  CAS  Google Scholar 

  149. Harvey SD, Fellows RJ, Cataldo DA, Bean RM (1993) Analysis of the explosive 2,4,6-trinitrophenylmethylnitramine (tetryl) in bush bean plants. J Chromatogr A 630:167–177

    Article  Google Scholar 

  150. Richard T, Weidhaas J (2014) Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater 280:561–569

    Article  CAS  Google Scholar 

  151. Ballentine ML, Ariyarathna T, Smith RW, Cooper C, Vlahos P, Fallis S, Groshens TJ, Tobias C (2016) Uptake and fate of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in coastal marine biota determined using a stable isotopic tracer, 15N—[RDX]. Chemosphere 153:28–38

    Article  CAS  Google Scholar 

  152. Ballentine M, Tobias C, Vlahos P, Smith R, Cooper C (2015) Bioconcentration of TNT and RDX in coastal marine biota. Arch Environ Contam Toxicol 68:718–728

    Article  CAS  Google Scholar 

  153. Belden JB, Lotufo GR, Lydy MJ (2005) Accumulation of hexahydro-1,3,5-trinitro-1,3,5-triazine in channel catfish (Ictalurus punctatus) and aquatic oligochaetes (Lumbriculus variegatus). Environ Toxicol Chem 24:1962–1967

    Article  CAS  Google Scholar 

  154. Lotufo GR (2011) Whole-body and body-part-specific bioconcentration of explosive compounds in sheepshead minnows. Ecotoxicol Environ Saf 74:301–306

    Article  CAS  Google Scholar 

  155. Lotufo GR, Biedenbach JM, Sims JG, Chappell P, Stanley JK, Gust KA (2015) Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34:880–886

    Article  CAS  Google Scholar 

  156. Ownby DR, Belden JB, Lotufo GR, Lydy MJ (2005) Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 1—Bioconcentration and distribution in channel catfish (Ictalurus punctatus). Chemosphere 58:1153–1159

    Article  CAS  Google Scholar 

  157. Lotufo GR, Lydy MJ (2005) Comparative toxicokinetics of explosive compounds in sheepshead minnows. Arch Environ Contam Toxicol 49:206–214

    Google Scholar 

  158. Lang PZ, Wang Y, Chen DB, Wang N, Zhao XM, Ding YZ (1997) Bioconcentration, elimination and metabolism of 2,4-dinitrotoluene in carps (Cyprinus carpio L.). Chemosphere 35:1799–1815

    Article  CAS  Google Scholar 

  159. Wang Y, Wang ZJ, Wang CX, Wang WH (1999) Uptake of weakly hydrophobic nitroaromatics from water by semipermeable membrane devices (SPMDs) and by goldfish (Carassius auratus). Chemosphere 38:51–66

    Article  CAS  Google Scholar 

  160. Belden JB, Ownby DR, Lotufo GR, Lydy MJ (2005) Accumulation of trinitrotoluene (TNT) in aquatic organisms: Part 2—bioconcentration in aquatic invertebrates and potential for trophic transfer to channel catfish (Ictalurus punctatus). Chemosphere 58:1161–1168

    Article  CAS  Google Scholar 

  161. Houston JG, Lotufo GR (2005) Dietary exposure of fathead minnows to the explosives TNT and RDX and to the pesticide DDT using contaminated invertebrates. Int J Environ Res Publ Health 2:286–292

    Article  CAS  Google Scholar 

  162. Lotufo GR, Blackburn W (2010) Bioaccumulation of TNT and DDT in sheepshead minnows, Cyprinodon variegatus L., following feeding of contaminated invertebrates. Bull Environ Contam Toxicol 84:545–549

    Article  CAS  Google Scholar 

  163. Rosen G, Wild B, George R., Belden JB, Lotufo GR (2017) Optimization and field demonstration of a passive sampling technology for monitoring conventional munitions constituents in aquatic environments. Mar Technol Soc J (in press)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilherme R. Lotufo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lotufo, G.R. (2017). Toxicity and Bioaccumulation of Munitions Constituents in Aquatic and Terrestrial Organisms. In: Shukla, M., Boddu, V., Steevens, J., Damavarapu, R., Leszczynski, J. (eds) Energetic Materials. Challenges and Advances in Computational Chemistry and Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-59208-4_13

Download citation

Publish with us

Policies and ethics