Skip to main content

Insensitive Munitions Formulations: Their Dissolution and Fate in Soils

  • Chapter
  • First Online:
Energetic Materials

Abstract

New explosive compounds that are less sensitive to shock and high temperatures are being tested as replacements for TNT (2,4,6-trinitrotoluene) and RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine). Two of these explosives, DNAN (2,4-dinitroanisole) and NTO (3-nitro-1,2,4-triazol-5-one), have good detonation characteristics and are the main ingredients in a suite of insensitive munitions (IM) explosives. Both compounds, however, are more soluble than either TNT or RDX. Data on their fate could help determine if DNAN and NTO have the potential to reach groundwater and be transported off base, an outcome that could create future contamination problems on military training ranges and trigger regulatory action. In this chapter, we describe how quickly IM constituents (DNAN, NTO, nitroguanidine, RDX and ammonium perchlorate) dissolve from three IM formulations (IMX-101, IMX-104 and PAX-21) and how solutions of IM compounds interact with different types of soils. This information, coupled with the mass of IM formulations scattered on a range, will allow estimates of the dissolved IM mass loads, their subsequent transport and fate, and their likelihood of reaching groundwater.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mirecki JE, Porter B, Weiss CA (2006) Environmental transport and fate process descriptors for propellant compounds. U.S. Army Engineer Research and Development Center, Vicksburg, MS

    Book  Google Scholar 

  2. Walsh MR, Walsh ME, Ramsey CA, Thiboutot S, Ampleman G, Diaz E, Zufelt JE (2014) Energetic residues from the detonation of IMX-104 insensitive munitions. Propellants, Explos, Pyrotech 39:243–250

    Article  CAS  Google Scholar 

  3. Olivares CI, Abrell L, Khatiwada R, Chorover J, Sierra-Alvarez R, Field JA (2016) (Bio)transformation of 2,4-dinitroanisole (DNAN) in soils. J Hazard Mater 304:214–221

    Article  CAS  Google Scholar 

  4. Lee K-Y, Chapman LB, Cobura MD (1987) 3-Nitro-1,2,4-triazol-5-one, a less sensitive explosive. J Energ Mater 5:27–33

    Google Scholar 

  5. Fung V, Price D, LeClaire E, Morris J, Tucker N, Carrillo A (2010) Further development and optimization of IM ingredients at Holston Army Ammunition Plant. In: 2010 insensitive munitions and energetic materials technology symposium, Munich, Germany

    Google Scholar 

  6. Walsh MR, Walsh ME, Taylor S, Ramsey CA, Ringelberg DB, Zufelt JE, Thiboutot S, Ampleman G, Diaz E (2013) Characterization of PAX-21 insensitive munition detonation residues. Propellants, Explos, Pyrotech 38:399–409

    Article  CAS  Google Scholar 

  7. Taylor S, Dontsova K, Walsh ME, Walsh MR (2015) Outdoor dissolution of detonation residues of three insensitive munitions (IM) formulations. Chemosphere 134:250–256

    Article  CAS  Google Scholar 

  8. Rao B, Wang W, Cai Q, Anderson T, Gu B (2013) Photochemical transformation of the insensitive munitions compound 2,4-dinitroanisole. Sci Total Environ 443:692–699

    Article  CAS  Google Scholar 

  9. Uchimiya M, Gorb L, Isayev O, Qasim MM, Leszczynski J (2010) One-electron standard reduction potentials of nitroaromatic and cyclic nitramine explosives. Environ Pollut 158:3048–3053

    Article  CAS  Google Scholar 

  10. Walsh MR, Walsh ME, Ramsey CA, Thiboutot S, Ampleman G, Dowden J (2015) Energetic residues from the detonation of IMX101 and IMX-104 munitions. ERDC/CRREL TR-15-3

    Google Scholar 

  11. Arthur JD, Mark NW, Taylor S, Šimunek J, Brusseau ML, Dontsova KM (2017) Batch soil adsorption and column transport studies of 2,4-dinitroanisole (DNAN) in soils. J Contam Hydrol 199:14–23

    Article  CAS  Google Scholar 

  12. Chakka S, Boddu VM, Maloney SW, Damavarapu R (2008) Prediction of physicochemical properties of energetic materials via EPI suite. American Institute of Chemical Engineers Annual Meeting, Philadelphia, PA

    Google Scholar 

  13. Wilson A (2007) Explosive ingredients and compositions for the IM M795 In: Artillery ammunition. 2007 insensitive munitions and energetic materials technology symposium, Miami, FL

    Google Scholar 

  14. Boddu VM, Abburi K, Maloney SW, Damavarapu R (2008) Thermophysical properties of an insensitive munitions compound, 2,4-dinitroanisole. J Chem Eng Data 53:1120–1125

    Article  CAS  Google Scholar 

  15. Smith MW, Cliff MD (1999) NTO based explosive formulations: a technology review. Weapons Systems Division, Aeronautical and Maritime Research Laboratory

    Google Scholar 

  16. Taylor S, Dontsova K, Bigl S, Richardson C, Lever J, Pitt J, Bradley JP, Walsh M, Šimůnek J (2012) Dissolution rate of propellant energetics from nitrocellulose matrices. Cold Regions Research and Engineering Laboratory, Hanover, NH

    Google Scholar 

  17. Monteil-Rivera F, Paquet L, Deschamps S, Balakrishnan V, Beaulieu C, Hawari J (2004) Physico-chemical measurements of CL-20 for environmental applications. Comparison with RDX and HMX. J Chromatogr A 1025:125–132

    Article  CAS  Google Scholar 

  18. Krzmarzick MJ, Khatiwada R, Olivares CI, Abrell L, Sierra-Alvarez R, Chorover J, Field JA (2015) Biotransformation and degradation of the insensitive munitions compound, 3-nitro-1,2,4-triazol-5-one, by soil bacterial communities. Environ Sci Technol 49:5681–5688

    Article  CAS  Google Scholar 

  19. Taylor S, Walsh ME, Becher JB, Ringelberg DB, Mannes PZ, Gribble GW (2017) Photo-degradation of 2,4-dinitroanisole (DNAN): an emerging munitions compound. Chemosphere 167:193–203

    Article  CAS  Google Scholar 

  20. Le Campion L, Vandais A, Ouazzani J (1999) Microbial remediation of NTO in aqueous industrial wastes. FEMS Microbiol Lett 176:197–203

    Article  Google Scholar 

  21. Lotufo GR, Biedenbach JM, Sims JG, Chappell P, Stanley JK, Gust KA (2015) Bioaccumulation kinetics of the conventional energetics TNT and RDX relative to insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34(4):880–886

    Google Scholar 

  22. Taylor S, Park E, Bullion K, Dontsova K (2015) Dissolution of three insensitive munitions formulations. Chemosphere 119:342–348

    Article  CAS  Google Scholar 

  23. Le Campion L, Giannotti C, Ouazzani J (1999) Photocatalytic degradation of 5-nitro-1,2,4-triazol-3-one NTO in aqueous suspention of TiO2. Comparison with Fenton oxidation. Chemosphere 38:1561–1570

    Article  Google Scholar 

  24. Hill FC, Sviatenko LK, Gorb L, Okovytyy SI, Blaustein GS, Leszczynski J (2012) DET M06-2X investigation of alkaline hydrolysis of nitroaromatic compounds. Chemosphere 88:635–643

    Article  CAS  Google Scholar 

  25. Haag WR, Spanggord R, Mill T, Podoll RT, Chou T-W, Tse DS, Harper JC (1990) Aquatic environmental fate of nitroguanidine. Environ Toxicol Chem 9:1359–1367

    Article  CAS  Google Scholar 

  26. Salter-Blanc AJ, Bylaska EJ, Ritchie JJ, Tratnyek PG (2013) Mechanisms and kinetics of alkaline hydrolysis of the energetic nitroaromatic compounds 2,4,6-trinitrotoluene (TNT) and 2,4-dinitroanisole (DNAN). Environ Sci Technol 47:6790–6798

    Article  CAS  Google Scholar 

  27. Haderlein SB, Weissmahr KW, Schwarzenbach RP (1996) Specific adsorption of nitroaromatic explosives and pesticides to clay minerals. Environ Sci Technol 30:612–622

    Article  CAS  Google Scholar 

  28. Roy WR, Krapac IG, Chou SFJ, Griffin RA (1992) Batch-type procedures for estimating soil adsorption of chemicals. Risk Reduction Engineering Laboratory, Cincinnati, OH, p 100

    Google Scholar 

  29. Liang J, Olivares C, Field JA, Sierra-Alvarez R (2013) Microbial toxicity of the insensitive munitions compound, 2,4-dinitroanisole (DNAN), and its aromatic amine metabolites. J Hazard Mater 262:281–287

    Google Scholar 

  30. Mark N, Arthur J, Dontsova K, Brusseau M, Taylor S, Šimůnek J (2017) Column transport studies of 3-nitro-1,2,4-triazol-5-one (NTO) in soils. Chemosphere 171:427–434

    Article  CAS  Google Scholar 

  31. Hawari J, Perreault N, Halasz A, Paquet L, Radovic Z, Manno D, Sunahara GI, Dodard S, Sarrazin M, Thiboutot S, Ampleman G, Brochu S, Diaz E, Gagnon A, Marois A (2012) Environmental fate and ecological impact of NTO, DNAN, NQ, FOX-7, and FOX-12 considered as substitutes in the formulations of less sensitive composite explosives. National Research Council Canada

    Google Scholar 

  32. Thorn KA, Pennington JC, Hayes CA (2001) Transformation of TNT in an aerobic compost: Structure and reactivity effects in the covalent binding of aromatic amines to organic matter. Abstr Pap Am Chem Soc 41:628–632

    CAS  Google Scholar 

  33. Chipen GI, Bokalder RP, Grinstein VY (1966) 1,2,4-triazol-3-one and its nitro and amino derivatives. Chem Heterocycl Compd 2:110–116

    Google Scholar 

  34. Mark N, Arthur J, Dontsova K, Brusseau M, Taylor S (2016) Adsorption and attenuation behavior of 3-nitro-1,2,4-triazol-5-one (NTO) in eleven soils. Chemosphere 144:1249–1255

    Article  CAS  Google Scholar 

  35. Taylor S, Lever JH, Fadden J, Perron N, Packer B (2009) Outdoor weathering and dissolution of TNT and Tritonal. Chemosphere 77:1338–1345

    Article  CAS  Google Scholar 

  36. Nandi AK, Singh SK, Kunjir GM, Singh J, Kumar A, Pandey RK (2012) Assay of the insensitive high explosive 3-nitro-1,2,4- triazol-5-one (NTO) by acid-base titration. Cent Eur J Energ Mater 2:4–5

    Google Scholar 

  37. Taylor S, Lever JH, Bostick B, Walsh MR, Walsh ME, Packer B (2004) Underground UXO: are they a significant source of explosives in soil compared to low- and high- order detonations? ERDC/CRREL technical report TR-04-23

    Google Scholar 

  38. Dontsova K, Taylor S, Pesce-Rodriguez R, Brusseau M, Arthur J, Mark N, Walsh M, Lever J, Šimůnek J (2014) Dissolution of NTO, DNAN, and insensitive munitions formulations and their fates in soils. Cold Regions Research and Engineering Laboratory, Hanover, NH, p 92

    Book  Google Scholar 

  39. Dontsova KM, Yost SL, Simunek J, Pennington JC, Williford CW (2006) Dissolution and transport of TNT, RDX, and composition B in saturated soil columns. J Environ Qual 35:2043–2054

    Article  CAS  Google Scholar 

  40. Thorn KA, Pennington JC, Kennedy KR, Cox LG, Hayes CA, Porter BE (2008) N-15 NMR study of the immobilization of 2,4- and 2,6-dinitrotoluene in aerobic compost. Environ Sci Technol 42:2542–2550

    Article  CAS  Google Scholar 

  41. Pelletier P, Lavigne D, Laroche I, Cantin F, Phillips L, Fung V (2010) Additional properties studies of DNAN based melt-pour explosive formulations. In: 2010 insensitive munitions and energetic materials technology symposium, Munich, Germany

    Google Scholar 

  42. London JO, Smith DM (1985) A toxicological study of NTO. Los Alamos National Laboratory Report

    Google Scholar 

  43. Dontsova K, Taylor S (this volume) High explosives: their dissolution and fate in soils. In: Shukla M, Boddu V, Steevens J, Reddy D, Leszczynski J (eds) Energetic materials: from cradle to grave

    Google Scholar 

  44. Hawari J, Monteil-Rivera F, Perreault NN, Halasz A, Paquet L, Radovic-Hrapovic Z, Deschamps S, Thiboutot S, Ampleman G (2015) Environmental fate of 2,4-dinitroanisole (DNAN) and its reduced products. Chemosphere 119:16–23

    Article  CAS  Google Scholar 

  45. Boparai H, Comfort S, Satapanajaru T, Szecsody J, Grossl P, Shea P (2010) Abiotic transformation of high explosives by freshly precipitated iron minerals in aqueous FeII solutions. Chemosphere 79:865–872

    Article  CAS  Google Scholar 

  46. Dontsova KM, Hayes C, Pennington JC, Porter B (2009) Sorption of high explosives to water-dispersible clay: influence of organic carbon, aluminosilicate clay, and extractable iron. J Environ Qual 38:1458–1465

    Article  CAS  Google Scholar 

  47. Spear RJ, Louey CN, Wolfson MG (1989) A preliminary assessment of 3-nitro-1,2,4-triazol-5-one (NTO) as an insensitive high explosive. DSTO Materials Research Laboratory, Maribyrnong, Australia, p 38

    Google Scholar 

  48. Brannon JM, Pennington JC (2002) Environmental fate and transport process descriptors for explosives. US Army Corps of Engineers, Engineer Research and Development Center, Vicksburg, MS

    Google Scholar 

  49. Linker BR, Khatiwada R, Perdrial N, Abrell L, Sierra R, Field JA, Chorover J (2015) Adsorption of novel insensitive munitions compounds at clay mineral and metal oxide surfaces. Environ Chem 12:74–84

    Article  CAS  Google Scholar 

  50. Davies PJ, Provatas A (2006) Characterisation of 2,4-dinitroanisole: an ingredient for use in low sensitivity melt cast formulations. Weapons Systems Division, Defence Science and Technology Organisation

    Google Scholar 

  51. Coppola EN (2007) Treatment technologies for perchlorate. In: Global demil symposium

    Google Scholar 

  52. Sokkalingam N, Potoff JJ, Boddu VM, Maloney SW (2008) Prediction of environmental impact of high-energy materials with atomistic computer simulations. In: ADM002187. Proceedings of the army science conference (26th) held in Orlando, Florida on 1–4 Dec 2008

    Google Scholar 

  53. Dumitras-Hutanu CA, Pui A, Jurcoane S, Rusu E, Drochioiu G (2009) Biological effect and the toxicity mechanisms of some dinitrophenyl ethers. Rom Biotechnol Lett 14:4893–4899

    CAS  Google Scholar 

  54. Taylor S, Lever JH, Walsh ME, Fadden J, Perron N, Bigl S, Spanggord R, Curnow M, Packer B (2010) Dissolution rate, weathering mechanics and friability of TNT, Comp B, Tritonal, and Octol. ERDC/CRREL

    Google Scholar 

  55. Eriksson J, Skyllberg U (2001) Binding of 2,4,6-trinitrotoluene and its degradation products in a soil organic matter two-phase system. J Environ Qual 30:2053–2061

    Article  CAS  Google Scholar 

  56. Stanley JK, Lotufo GR, Biedenbach JM, Chappell P, Gust KA (2015) Toxicity of the conventional energetics TNT and RDX relative to new insensitive munitions constituents DNAN and NTO in Rana pipiens tadpoles. Environ Toxicol Chem 34(4):873–879

    Google Scholar 

  57. Dodard SG, Sarrazin M, Hawari J, Paquet L, Ampleman G, Thiboutot S, Sunahara GI (2013) Ecotoxicological assessment of a high energetic and insensitive munitions compound: 2,4-dinitroanisole (DNAN). J Hazard Mater 262:143–150

    Article  CAS  Google Scholar 

  58. Taylor S, Ringelberg DB, Dontsova K, Daghlian CP, Walsh ME, Walsh MR (2013) Insights into the dissolution and the three-dimensional structure of insensitive munitions formulations. Chemosphere 93:1782–1788

    Article  CAS  Google Scholar 

  59. Yoon JM, Oliver DJ, Shanks JV (2005) Plant transformation pathways of energetic materials (RDX, TNT, DNTs). In: Eaglesham A, Bessin R, Trigiano R, Hardy RWT (eds) Agricultural biotechnology: beyond food and energy to health and the environment, national agricultural biotechnology council report 17. Ithaca, New York, National Agricultural Biotechnology Council, pp 103–116

    Google Scholar 

  60. Walsh MR, Walsh ME, Ramsey CA, Brochu S, Thiboutot S, Ampleman G (2013) Perchlorate contamination from the detonation of insensitive high-explosive rounds. J Hazard Mater 262:228–233

    Article  CAS  Google Scholar 

  61. Motzer WE (2001) Perchlorate: problems, detection, and solutions. Environ Forensics 2:301–311

    Article  CAS  Google Scholar 

  62. Le Campion L, Adeline MT, Ouazzani J (1997) Separation of NTO related 1,2,4-triazole-3-one derivatives by a high performance liquid chromatography and capillary electrophoresis. Propellants, Explos, Pyrotech 22:233–237

    Article  Google Scholar 

  63. Walsh MR, Walsh ME, Poulin I, Taylor S, Douglas TA (2011) Energetic residues from the detonation of common US ordnance. Int J Energ Mater Chem Propul 10:169–186

    Google Scholar 

  64. Richard T, Weidhaas J (2014) Dissolution, sorption, and phytoremediation of IMX-101 explosive formulation constituents: 2,4-dinitroanisole (DNAN), 3-nitro-1,2,4-triazol-5-one (NTO), and nitroguanidine. J Hazard Mater 280:561–569

    Article  CAS  Google Scholar 

  65. Lever JH, Taylor S, Perovich L, Bjella K, Packer B (2005) Dissolution of composition B detonation residuals. Environ Sci Technol 39:8803–8811

    Google Scholar 

  66. Taylor S, Lever JH, Fadden J, Perron N, Packer B (2009) Simulated rainfall-driven dissolution of TNT, Tritonal, comp B and Octol particles. Chemosphere 75:1074–1081

    Article  CAS  Google Scholar 

  67. Park J, Comfort SD, Shea PJ, Machacek TA (2004) Remediating munitions-contaminated soil with zerovalent iron and cationic surfactants. J Environ Qual 33:1305–1313

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Taylor, S., Dontsova, K., Walsh, M. (2017). Insensitive Munitions Formulations: Their Dissolution and Fate in Soils. In: Shukla, M., Boddu, V., Steevens, J., Damavarapu, R., Leszczynski, J. (eds) Energetic Materials. Challenges and Advances in Computational Chemistry and Physics, vol 25. Springer, Cham. https://doi.org/10.1007/978-3-319-59208-4_12

Download citation

Publish with us

Policies and ethics