Skip to main content

Allium cepa Root Chromosomal Aberration Assay: An Application in Assessing Anti-genotoxic Potential of Ashwagandha

  • Chapter
  • First Online:
Science of Ashwagandha: Preventive and Therapeutic Potentials

Abstract

Plant kingdom is rich in phytochemicals with high potential for medicinal and therapeutic uses. These can be particularly recruited to combat the environmental genotoxins that have increased tremendously in last few decades due to industrialization of human lifestyle. Screening of plants for this purpose involves a battery of bioassays; the mammalian or bacterial assays are used worldwide. Considering the ethical and economic reasons, the use of plant bioassays for the initial screening is advocated. Of all plant bioassays available, Allium cepa root chromosomal aberration assay is an efficient, most-easy and inexpensive tool that can be used for (i) assessment of genotoxicity of environmental mutagens and (ii) evaluation of anti-genotoxic potential of plant extracts. The present chapter discusses the history, application and technical aspects of this assay in assessing the geno-protective potential of various plants with special reference to Ashwagandha, the wonder herb.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ames BN, Lee FD, Durston WE (1983) An improved bacterial test system for the detection and classification of mutagens and carcinogens. Proc Natl Acad Sci U S A 70:782–786

    Article  Google Scholar 

  • Arora S, Dhillon S, Rani G, Nagpal A (2004) The in vitro antibacterial and synergistic activities of Withania somnifera extracts. Fitoterapia 7:385–388

    Article  Google Scholar 

  • Asita AO, Makhobo MM (2013) Clastogenic and cytotoxic effects of four pesticides used to control insect pests of stored products on root meristems of Allium cepa. Environ Nat Resour Res 3:133–145

    Google Scholar 

  • Bolle P, Mastrangelo S, Tucci P, Evandri MG (2004) Clastogenicity of atrazine assessed with the Allium cepa test. Environ Mol Mutagen 43:137–141

    Article  CAS  PubMed  Google Scholar 

  • Brei M, Perez-Barahona A, Strobl E (2016) Environmental pollution and biodiversity: light pollution and sea turtles in the Caribbean. J Environ Econ Manag 77:95–116

    Article  Google Scholar 

  • Buddhiraja RD, Sudhir S (1987) Review of biological activity of withanolides. J Sci Ind Res Ind 46:488–491

    Google Scholar 

  • Cigerci IH, Liman R, Ozgul E, Konuk M (2014) Genotoxicity of indium tin oxide by Allium and Comet tests. Cytotechnology 67:157–163

    Article  Google Scholar 

  • Constantin MJ, Nilan RA (1982) Chromosomal aberration assays in barley (Hordeum vulgare) a report of the US environmental protection agency gene tox program. Mutat Res 99:13–36

    Article  CAS  Google Scholar 

  • Eleftheriou EP, Adamakis I-DS, Melissa P (2012) Effects of hexavalent chromium on microtubule organization, ER distribution and callose deposition in root tip cells of Allium cepa L. Protoplasma 249:401–416

    Article  CAS  PubMed  Google Scholar 

  • Evans HJ (1977) Molecular mechanism in the induction of chromosome aberrations. In: Scott D, Bridges BA, Sobels FH (eds) Progress in Genetic Toxicology. Elsevier/North-Holland and Biomedical Press, Amsterdam, p 57

    Google Scholar 

  • Fedel-Miyasato LES, Formagio ASN, Auharek SA, Kassuya CAL, Navarrol SD, Cunha-Laura AL, Monreal ACD, Vieira MC, Oliveira RJ (2014) Antigenotoxic and antimutagenic effects of Schinus terebinthifolius Raddi in Allium cepa and Swiss mice: a comparative study. Genet Mol Res 13:3411–3425

    Article  CAS  PubMed  Google Scholar 

  • Fiskesjo G (1969) Some results from Allium tests with organic mercury halogenides. Hereditas 62:314–322

    Article  CAS  PubMed  Google Scholar 

  • Fiskesjo G (1979) Mercury and selenium in a modified Allium test. Hereditas 9:169–178

    Google Scholar 

  • Fiskesjo G (1985) The Allium test as a standard in environmental monitoring. Hereditas 102:99–112

    Article  CAS  PubMed  Google Scholar 

  • Fiskesjo G (1988) The Allium test-an alternative in environmental studies: the relative toxicity of metal ions. Mutat Res 197:243–260

    Article  CAS  PubMed  Google Scholar 

  • Grant WF (1978) Chromosome aberrations in plants as a monitoring system. Environ Health Perspect 27:37–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant WF (1979) The genotoxic effects of 2,4,5-T. Mutat Res 65:83–119

    Article  CAS  PubMed  Google Scholar 

  • Grant WF (1982) Cytogenitic studies of agricultural chemicals in plants. In: Fleck RA, Hollander A (eds) Genetic toxicology, An agricultural Perspective, vol 21. Plenum Press, New York and London, pp 353–378

    Chapter  Google Scholar 

  • Grover IS, Kaur S (1999) Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium cepa root anaphase aberration and micronucleus assays. Mutat Res 426:183–188

    Article  CAS  PubMed  Google Scholar 

  • Hamza A, Amin A, Daoud S (2008) The protective effect of a purified extract of Withania somnifera against doxorubicin-induced cardiac toxicity in rats. Cell Biol Toxicol 24:63–73

    Article  CAS  PubMed  Google Scholar 

  • Hazarika A, Sarkar SN (2001) Effect of isoproturon pretreatment on the biochemical toxicodynamics of anilofos in male rats. Toxicology 165:87–95

    Article  CAS  PubMed  Google Scholar 

  • Katnoria JK, Arora S, Bhardwaj R, Nagpal A (2011) Evaluation of genotoxic potential of industrial waste contaminated soil extracts of Amritsar, India. J Environ Biol 32:363–367

    CAS  PubMed  Google Scholar 

  • Kaur K, Rani G, Widodo N, Nagpal A, Taira K, Kaul SC, Wadhwa R (2004) Evaluation of the anti-proliferative and antioxidative activities of leaf extract from in vivo and in vitro raised Ashwagandha. Food Chem Toxicol 42:2015–2020

    Article  CAS  PubMed  Google Scholar 

  • Kaur K, Widodo N, Nagpal A, Kaul SC, Wadhwa R (2007) Sensitization of human cancer cells to anticancer drugs by leaf extract of Ashwagandha (LASH). Tissue Cult Res Commun 26:193–199

    Google Scholar 

  • Kaur M, Soodan RK, Katnoria JK, Bhardwaj R, Pakade YB, Nagpal AK (2014) Analysis of physico-chemical parameters, genotoxicity and oxidative stress inducing potential of soils of some agricultural fields under rice cultivation. Trop Plant Res 1:49–61

    Google Scholar 

  • Kim K, Kabir E, Jahan SA (2016) A review on the distribution of Hg in the environment and its human health impacts. J Hazard Mater 306:376–385

    Article  CAS  PubMed  Google Scholar 

  • Kong MS, Ma TH (1999) Genotoxicity of contaminated soil and shallow well water detected by plant bioassays. Mutat Res 426:221–228

    Article  CAS  PubMed  Google Scholar 

  • Kristen U (1997) Use of higher plants as screens for toxicity assessment. Toxicol In Vitro 11:181–191

    Article  CAS  PubMed  Google Scholar 

  • Levan A (1938) The effect of colchicine on root mitoses in Allium. Hereditas 24:471–486

    Article  Google Scholar 

  • Ma TH, Anderson VA, Harris MM, Bare JL (1983) Tradescantia-micronucleus (Trad-MCN) test on the genotoxicity of malathion. Environ Mutagen 5:127–137

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto ST, Mantovani MS, Malagutti MIA, Dias AL, Fonseca IC, Marin-Morales MA (2006) Genotoxicity and mutagenicity of water contaminated with tannery, as evaluated by the micronucleus test and comet assay using the fish Oreochromis niloticus and chromosome aberration in onion root-tips. Genet Mol Biol 29:148–158

    Article  CAS  Google Scholar 

  • Mekki LL, Mansour H, Eldean EG, Nasser AA (2015) Evaluation of anti-genotoxicity of the ethanolic plant extract of Beta vulgaris Maritima using Allium cepa root assay. Egypt J Exp Biol 11:147–153

    Google Scholar 

  • Mouchet F, Gauthier L, Mailhes C, Jourdain MJ, Ferrier V, Triffault G, Devaux A (2006) Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration, using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (Mutatox and Ames tests). Sci Total Environ 15:232–246

    Article  Google Scholar 

  • Nagpal A, Grover IS (1994) Genotoxic evaluation of some systemic pesticides in Allium cepa following in situ and direct treatments I mitotic effects. Nucleus 37:99–105

    CAS  Google Scholar 

  • Ozkara A, Akyl D, Eren Y, Erdogmus SF (2015) Potential cytotoxic effect of Anilofos by using Allium cepa assay. Cytotechnology 67:783–791

    Article  CAS  PubMed  Google Scholar 

  • Peacock WJ, Wolff S, Lindley DL (1973) Continuity of chromosome subunits. Chromosom Today 4:85–100

    CAS  Google Scholar 

  • Plewa MJ (1982) Specific-locus mutation assays in Zea mays a report of the U.S. Environmental Protection Agency Gene-Tox program. Mutat Res 99:317–337

    Article  CAS  PubMed  Google Scholar 

  • Pohren P, Thatiana C, Vargas VMF (2013) Investigation of sensitivity of the Allium cepa test as an alert system to evaluate the genotoxic potential of soil contaminated by heavy metals. Water Air Soil Pollut 224:1460–1470

    Article  Google Scholar 

  • Popesku JT, Tan EY, Martel PH, Kovacs TG, Rowan-Carroll A, Williams A, Yauk C, Trudeau VL (2010) Gene expression profiling of the fathead minnow (Pimephales promelas) neuroendocrine brain in response to pulp and paper mill effluents. Aquat Toxicol 99:379–388

    Article  CAS  PubMed  Google Scholar 

  • Prajitha V, Thoppil JE (2016) Genotoxic and antigenotoxic potential of the aqueous leaf extracts of Amaranthus spinosus Linn. Using Allium cepa assay. S Afr J Bot 102:18–25

    Article  Google Scholar 

  • Quidet P, Hitier H (1948) The production of polyploidy plants by treatment with hexachlorocyclohexane sulphide. C R Acad Sci 226:833–835

    CAS  Google Scholar 

  • Raghuvanshi SS, Singh AK (1976) Effect of gamma rays on growth and Karyokinetic activity in Trigonella foenum-oraceum L. Cytologia 4:177–186

    Article  Google Scholar 

  • Rani G, Kaur K, Wadhwa R, Kaul SC, Nagpal A (2005) Evaluation of the anti-genotoxicity of leaf extract of Ashwagandha. Food Chem Toxicol 43:95–98

    Article  CAS  PubMed  Google Scholar 

  • Rank J (2003) The method of Allium anaphase-telophase chromosome aberration assay. Ekologija (Vilnius) 1:38–42

    Google Scholar 

  • Rank J, Neilson MH (1997) Allium cepa anaphase-telophase root tip chromosome aberration assay on N-methyl N-nitrosourea, maleic hydrazide, sodium azide and ethylmethane sulfonate. Mutat Res 390:121–127

    Article  CAS  PubMed  Google Scholar 

  • Rank J, Nielsen MH (1993) A modified Allium test as a tool in the screening of the genotoxicity of complex mixtures. Hereditas 118:49–53

    Article  CAS  Google Scholar 

  • Rathnasamy S, Mohamed KB, Sulaiman SF, Akinboro A (2013) Evaluation of cytotoxic, mutagenic and antimutagenic potential of leaf extracts of three medicinal plants using Allium cepa chromosome assay. Int Curr Pharm J 2:131–140

    Article  Google Scholar 

  • Rathore HS, Choubey P (2005) Prevention of acetaminophen-induced Mitodepression with Myrobalan (fruit of Terminalia chebula) in Allium cepa model. Iran J Pharmacol Ther 4:100–104

    CAS  Google Scholar 

  • Ravi RG, Harikesh D, Chandrasekhar TR, Pramod YG, Angad PM (2011) Cytotoxic activity of ethanolic root extract of Calotropis gigantea Linn. Int J Drug Dev Res 3:101–108

    Google Scholar 

  • Roberto MM, Jamal CM, Malaspina O, Marin-Morales MA (2016) Antigenotoxicity and antimutagenicity of ethanolic extracts of Brazilian green propolis and its main botanical source determined by the Allium cepa test system. Genet Mol Biol 39:257–269

    Article  PubMed  PubMed Central  Google Scholar 

  • Samanta A, Bandyopadhyay B (2011) Prevention of cadmium induced genotoxicity with Emblica officinalis L. (Amla) in Allium test. Res J Pharm, Biol Chem Sci 3:890–897

    Google Scholar 

  • Sax K (1940) An analysis of X-ray induced chromosomal aberrations in Tradescantia. Genetics 25:41–68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Scholes ME (1955) The effects of aldrin, dieldrin, isodrin, endrin and DDT on mitosis of the onion (Allium cepa L.) J Hortic Sci 30:181–187

    Article  CAS  Google Scholar 

  • Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, Kaul SC, Wadhwa R (2015) Combinations of Ashwagandha leaf extracts protect brain –derived cells against oxidative stress and induce differentiation. PLoS One 10:1–14

    Google Scholar 

  • Sharma A, Kumar M, Kaur S (2011) Cuminum cyminum Linn. And Coriandrum sativum Linn. Extracts modulate chromium genotoxicity in Allium cepa chromosomal aberration assay. Nucleus 54:99–105

    Article  Google Scholar 

  • Sharma S, Nagpal A, Vig AP (2012) Genoprotective potential of Brassica juncea (L.) Czern. Against mercury-induced genotoxicity in Allium cepa L. Turk J Biol 36:622–629

    Google Scholar 

  • Silva DSBS, Garcia ACFS, Mata SS, de Oliveira B, Estevam CS, Scher R, Pantaleao SM (2013) Genotoxicity and cytotoxicity of Erythrina velutina Willd., Fabaceae, on the root meristem cells of Allium cepa. Braz J Pharm 21:92–97

    Article  Google Scholar 

  • Soodan RK, Katnoria JK, Nagpal A (2009a) Evaluation of genotoxic effects of lead nitrate in Allium cepa root chromosomal aberration assay. Int J Biosci Rep 7:245–249

    Google Scholar 

  • Soodan RK, Katnoria JK, Kaur G, Nagpal A (2009b) Genoprotective potential of an aqueous extract of leaves of Withania somnifera against lead induced genotoxicity in plant and mammalian bioassays. Perspect Cytol Genet 15:283–296

    Google Scholar 

  • Souza TS, Hencklein FA, Angelis DF, Fontanetti CS (2013) Clastogenicity of landfarming soil treated with sugar cane vinasse. Environ Monit Assess 185:1627–1636

    Article  CAS  Google Scholar 

  • Tusell L, Pampalona J, Soler D, Frias C, Genesca A (2010) Different outcomes of telomere-dependent anaphase bridges. Biochem Soc Trans 38:1698–1703

    Article  CAS  PubMed  Google Scholar 

  • Weil RE, Spade DJ, Knoebl I, Hemming JM, Tongue ML, Szabo NJ, Kroll KJ, Tate WB, Denslow ND (2012) Evaluation of water quality threats to the endangered Okaloosa darter (Etheostoma okaloosae) in East Turkey Creek on Eglin Air Force Base. Aquat Toxicol 110–111:177–186

    Article  PubMed  Google Scholar 

  • Widodo N, Kaur K, Shrestha BG, Takagi Y, Ishii T, Wadhwa R, Kaul SC (2007) Selective killing of cancer cells by leaf extract of Ashwagandha: identification of tumor-inhibitory factor and the first molecular insights to its effects. Cancer Prev Res 13:2298–2306

    CAS  Google Scholar 

  • Wilson SM, Daniel A, Wilson GB (1956) Cytological and genetical effects of the defoliant endothal. J Hered 47:151–155

    Article  Google Scholar 

  • Xia Z, Duan X, Tao S, Qiu W, Liu D, Wang Y, Wei S, Wang Y, Wei S, Wang B, Jiang Q, Lu B, Song Y, Hu X (2013) Pollution level, inhalation exposure and lung cancer risk of ambient atmospheric polycyclic aromatic hydrocarbons (PAHs) in Taiyuan, China. Environ Pollut 173:150–156

    Article  CAS  PubMed  Google Scholar 

  • Yıldız M, Cigerci IH, Konuk M, Fidan AF, Terzi H (2009) Determination of genotoxic effects of copper sulphate and cobalt chloride in Allium cepa root cells by chromosome aberration and comet assays. Chemosphere 75:934–938

    Article  PubMed  Google Scholar 

  • Ziauddin M, Phansalka N, Patki P, Diwanay S, Patwardhan B (1996) Studies on the immunomodulatory effects of Ashwagandha. J Ethnopharmacol 50:69–76

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avinash Kaur Nagpal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Soodan, R.K., Sharma, A., Kaur, M., Katnoria, J.K., Nagpal, A.K. (2017). Allium cepa Root Chromosomal Aberration Assay: An Application in Assessing Anti-genotoxic Potential of Ashwagandha. In: Kaul, S., Wadhwa, R. (eds) Science of Ashwagandha: Preventive and Therapeutic Potentials. Springer, Cham. https://doi.org/10.1007/978-3-319-59192-6_3

Download citation

Publish with us

Policies and ethics