Skip to main content

Therapeutic Effects of Ashwagandha in Brain Aging and Clock Dysfunction

  • Chapter
  • First Online:

Abstract

The master pacemaker, the suprachiasmatic nucleus (SCN), containing light-entrained circadian clock orchestring mammalian circadian rhythms in physiology and behavior is located in hypothalamus. SCN possessing core circadian machinery genes regulates the synthesis and release of melatonin (messanger of darkness) from the pineal gland via multisynaptic pathway. The decline in endogenous levels of this multitasking molecule with aging is associated with circadian dysfunction, neurodegeneration and brain aging as well as alterations in the endogenous defense and survival mechanisms. The age-related neurodegenerative disorders in the elderly have increased dramatically parallel to increase in longevity limiting quality of life. This is linked to need for development of effective therapeutic agents for healthy aging. Herbal extracts or formulations have been in use since ancient cultures involving herbal medicines which are of greater scientific interest as have been demonstrated to be capable of treating disease and improving health often without any significant side effects. Ashwagandha, Withania somnifera (WS), has been reported to have biologically active constituents such as alkaloids, steroidal compounds, glycowithanolides etc. having anti-oxidative, anti-aging and anti-inflammatory properties. The studies in our laboratory have revealed the therapeutic and adaptogenic potential of hydroalcoholic leaf extract of WS on age induced alterations in various clock gene expression and its modulators. This chapter is aimed to summarize the current knowledge on the changes of the circadian system in advanced age and the therapeutic effects of WS on brain aging and clock dysfunctions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ahmad M, Saleem S, Ahmad AS, Ansari MA, Yousuf S, Hoda MN, Islam F (2005) Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 24:137–147

    Article  PubMed  Google Scholar 

  • Akhoon BA, Pandey S, Tiwari S, Pandey R (2016) Withanolide A offers neuroprotection, ameliorates stress resistance and prolongs the life expectancy of Caenorhabditis elegans. Exp Gerentol 78:47–56

    Article  CAS  Google Scholar 

  • Albrecht U (2012) Timing to perfection: the biology of central and peripheral circadian clocks. Neuron 74:246–260

    Google Scholar 

  • Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 12:175

    Article  PubMed  PubMed Central  Google Scholar 

  • Arellanes-Licea E, Caldelas I, De Ita-Pérez D, Díaz-Muñoz M (2014) The circadian timing system: a recent addition in the physiological mechanisms underlying pathological and aging processes. Aging Dis 5:406–418

    PubMed  PubMed Central  Google Scholar 

  • Asher G, Gatfield D, Stratmann M, Reinke H, Dibner C, Kreppel F, Schibler U (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134:317–328

    Article  CAS  PubMed  Google Scholar 

  • Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A Prevents Neurodegeneration by Modulating Hippocampal Glutathione Biosynthesis during Hypoxia. PLoS One 9:e105311

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellet MM, Sassone-Corsi P (2010) Mammalian circadian clock and metabolism – the epigenetic link. J Cell Sci 123:3837–3848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berghe WV, Sabbe L, Kaileh M, Haegeman G, Heyninck K (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 84:1282–1291

    Article  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset CLWT (1995) Use of a free radical method to evaluate antioxidant activity. Lebensm Wiss u Technol 28:25–30

    Article  CAS  Google Scholar 

  • Cai Y, Liu S, Sothern RB, Xu S, Chan P (2010) Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol 17:550–554

    Article  CAS  PubMed  Google Scholar 

  • Candelario M, Cuellar E, Reyes-Ruiz JM, Darabedian N, Feimeng Z, Miledi R, Russo-Neustadt A, Limon A (2015) Direct evidence for GABAergic activity of Withania somnifera on mammalian ionotropic GABA A and GABAρ receptors. J Ethnopharmacol 171:264–272

    Article  CAS  PubMed  Google Scholar 

  • Cermakian N, Lamont EW, Boudreau P, Boivin DB (2011) Circadian clock gene expression in brain regions of Alzheimer’s disease patients and control subjects. J Biol Rhythms 26:160–170

    Article  PubMed  Google Scholar 

  • Chang H, Guarente L (2011) SIRT1 mediates central circadian control in the SCN by a mechanism that decays with aging. Cell 153:1448–1460

    Article  Google Scholar 

  • Chengappa KR, Bowie CR, Schlicht PJ, Fleet D, Brar JS, Jindal R (2013) Randomized placebo-controlled adjunctive study of an extract of Withania somnifera for cognitive dysfunction in bipolar disorder. J Clin Psychiatry 74:1076–1083

    Article  PubMed  Google Scholar 

  • Dar NJ, Hamid A, Ahmad M (2015) Pharmacologic overview of Withania somnifera, the Indian Ginseng. Cell Mol Life Sci 72:4445–4460

    Article  CAS  PubMed  Google Scholar 

  • Das A, Shanker G, Nath C, Pal R, Singh S, Singh HK (2002) A comparative study in rodents of standardized extracts of Bacopa monniera and Ginkgo biloba: Anticholinesterase and cognitive enhancing activities. Pharmacol Biochem Behavior 73:893–900

    Article  CAS  Google Scholar 

  • Dibner C, Schibler U, Albrecht U (2010) The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol 72:517–549

    Article  CAS  PubMed  Google Scholar 

  • Dubocovich ML (2007) Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med 8:34–42

    Article  PubMed  Google Scholar 

  • Duncan MJ, Prochot JR, Cook DH, Tyler SJ, Franklin KM (2013) Influence of aging on Bmal1 and Per2 expression in extra-SCN oscillators in hamster brain. Brain Res 1491:44–53

    Article  CAS  PubMed  Google Scholar 

  • Farooqui AA (2016) Effects of curcumin on neuroinflammation in animal models and in patients with Alzheimer disease. In: Therapeutic potentials of curcumin for Alzheimer disease. Springer International Publishing, Cham, pp 259–296

    Google Scholar 

  • Gautam A, Kaul SC, Thakur MK (2016) Alcoholic extract of Ashwagandha leaves protects against amnesia by regulation of Arc function. Mol Neurobiol 53:1760–1769

    Article  CAS  PubMed  Google Scholar 

  • Gerhart-Hines Z, Feng D, Emmett MJ, Everett LJ, Loro E, Briggs ER, Bugge A, Hou C, Ferrara C, Seale P, Pryma DA, Khurana TS, Lazar MA (2013) The nuclear receptor Rev-erbα controls circadian thermogenic plasticity. Nature 503:410–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gibson EM, Williams WP, Kriegsfeld LJ (2009) Aging in the circadian system: considerations for health, disease prevention and longevity. Exp Gerontol 44:51–56

    Article  PubMed  Google Scholar 

  • Gocmez SS, Gacar N, Utkan T, Gacar G, Scarpace PJ, Tumer N (2016) Protective effects of resveratrol on aging-induced cognitive impairment in rats. Neurobiol Learn Mem 131:131–136

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Shandilya A, Punetha A, Bisaria VS, Sundar D (2010) Inhibition of the NEMO/IKKβ association complex formation, a novel mechanism associated with the NF-κB activation suppression by Withania somnifera’s key metabolite withaferin A. BMC genomics 11:25

    Article  PubMed  PubMed Central  Google Scholar 

  • Gülçin İ (2010) Antioxidant properties of resveratrol: a structure–activity insight. Innov Food Sci Emerg Technol 11:210–218

    Article  Google Scholar 

  • Hardeland R, Madrid JA, Tan DX, Reiter RJ (2012) Melatonin, the circadian multioscillator system and health: the need for detailed analyses of peripheral melatonin signalling. J Pineal Res 52:139–166

    Article  CAS  PubMed  Google Scholar 

  • Ho YS, Li XA, Hung CHL, Chang RCC (2015) Prevention of neurodegeneration for Alzheimer’s disease by Lycium barbarum. In: Chang RC, So K (eds) Lycium Barbarum and human health. Springer Netherlands, London, pp p99–111

    Google Scholar 

  • Hofman MA, Swaab DF (2006) Living by the clock: the circadian pacemaker in older people. Ageing Res Rev 5:33–51

    Article  CAS  PubMed  Google Scholar 

  • Jagota A (2006) Suprachiasmatic nucleus: the center for circadian timing system in mammals. Proc Indian Natl Sci Acad 71:275–288

    Google Scholar 

  • Jagota A (2012) Age-induced alterations in biological clock: therapeutic effects of melatonin. In: Thakur MK, Rattan SIS (eds) Brain aging and therapeutic interventions. Springer Netherlands, London, pp p111–p129

    Chapter  Google Scholar 

  • Jagota A, Kalyani D (2008) Daily serotonin rhythms in rat brain during postnatal development and aging. Biogerontology 9:229–234

    Article  CAS  PubMed  Google Scholar 

  • Jagota A, Kalyani D (2010) Effect of melatonin on age induced changes in daily serotonin rhythms in suprachiasmatic nucleus of male wistar rat. Biogerontology 11:299–308

    Article  CAS  PubMed  Google Scholar 

  • Jagota A, Reddy MY (2007) The effect of curcumin on ethanol induced changes in Suprachiasmatic nucleus (SCN) and Pineal. Cell Mol Neurobiol 27:997–1006

    Article  CAS  PubMed  Google Scholar 

  • Jagota A, de la Iglesia HO, Schwartz WJ (2000) Morning and evening circadian oscillations in the suprachiasmatic nucleus in vitro. Nat Neurosci 3:372–376

    Article  CAS  PubMed  Google Scholar 

  • Jeyanthi T, Subramanian P, Kumaravel P, Sivaperumal R (2010) Influence of Withania somnifera on circadian rhythms of lipid peroxidation products and antioxidants in Gentamicin induced nephrotoxicity. Biol Rhythm Res 41:477–486

    Article  CAS  Google Scholar 

  • Jung-Hynes B, Reiter RJ, Ahmad N (2010) Sirtuins, melatonin and circadian rhythms: building a bridge between aging and cancer. J Pineal Res 48:9–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamphuis W, Cailotto C, Dijk F, Bergen A, Buijs RM (2005) Circadian expression of clock genes and clock-controlled genes in the rat retina. Biochem Biophys Res Commun 330:18–26

    Article  CAS  PubMed  Google Scholar 

  • Kano M, Takayanagi T, Harada K, Makino K, Ishikawa F (2005) Antioxidative activity of anthocyanins from purple sweet potato, Ipomoera batatas cultivar Ayamurasaki. Biosci Biotechnol Biochem 69:979–988

    Article  CAS  PubMed  Google Scholar 

  • Kataria H, Wadhwa R, Kaul SC, Kaur G (2013) Withania somnifera water extract as a potential candidate for differentiation based therapy of human neuroblastomas. PLoS One 8:e55316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khan MA, Subramaneyaan M, Arora VK, Banerjee BD, Ahmed RS (2015) Effect of Withania somnifera (Ashwagandha) root extract on amelioration of oxidative stress and autoantibodies production in collagen-induced arthritic rats. J Complement Integr Med 12:117–125

    PubMed  Google Scholar 

  • Kim YK, Guo Q, Packer L (2002) Free radical scavenging activity of red ginseng aqueous extracts. Toxicology 172:149–156

    Article  CAS  PubMed  Google Scholar 

  • Kitts DD, Wijewickreme AN, Hu C (2000) Antioxidant properties of a North American ginseng extract. Mol Cell Biochem 203:1–10

    Article  CAS  PubMed  Google Scholar 

  • Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6:e27265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konturek SJ, Konturek PC, Brzozowska I, Pawlik M, Sliwowski Z, Czesnikiewicz-Guzik M, Kwiecien S, Brzozowski T, Bubenik GA, Pawlik WW (2007) Localization and biological activities of melatonin in intact and diseased gastrointestinal tract (GIT). J Physiol Pharmacol 58:381–405

    CAS  PubMed  Google Scholar 

  • Krishnan N, Rakshit K, Chow ES, Wentzell JS, Kretzschmar D, Giebultowicz JM (2012) Loss of circadian clock accelerates aging in neurodegeneration-prone mutants. Neurobiol Dis 45:1129–1135

    Article  CAS  PubMed  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2005) Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol 144:961–971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2006) Withanoside IV and its active metabolite, sominone, attenuate Aβ (25–35)-induced neurodegeneration. Eur J Neurosci 23:1417–1426

    Article  PubMed  Google Scholar 

  • Kudo T, Loh DH, Truong D, Wu Y, Colwell CS (2011) Circadian dysfunction in a mouse model of Parkinson’s disease. Exp neurol 232:66–75

    Article  PubMed  Google Scholar 

  • Kulkarni SK, Dhir A (2008) Withania somnifera: an Indian ginseng. Prog Neuropsychopharmacol Biol Psychiatry 32:1093–1105

    Article  CAS  PubMed  Google Scholar 

  • Kumar A, Kalonia H (2007) Protective effect of Withania somnifera Dunal on the behavioral and biochemical alterations in sleep-disturbed mice (Grid over water suspended method). Indian J Exp Biol 45:524–528

    PubMed  Google Scholar 

  • Kumar A, Kalonia H (2008) Effect of Withania somnifera on sleep-wake cycle in sleep-disturbed rats: Possible GABAergic mechanism. Indian J Pharm Sci 70:806–810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Gupta K, Saharia K, Pradhan D, Subramaniam JR (2013) Withania somnifera root extract extends lifespan of Caenorhabditis elegans. Ann Nurosci 20:13–16

    Google Scholar 

  • Lee LSJ, Liu T, Chattoraj A, Zhang SL, Wang L, Lee TM and Wang MM (2009) Posttranscriptional regulation of pineal melatonin synthesis in Octodon degus. J Pineal Res 47:75–81

    Google Scholar 

  • Lee Y, Oh S (2015) Administration of red ginseng ameliorates memory decline in aged mice. J Ginseng Res 39:250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li S, Zhang L (2015) Circadian control of global transcription. Biomed Res Int 187809:1–8

    Google Scholar 

  • Li XM, Li XL, Zhou AG (2007) Evaluation of antioxidant activity of the polysaccharides extracted from Lycium barbarum fruits in vitro. Eur Polym J 43:488–497

    Article  CAS  Google Scholar 

  • Madeira MD, Sousa N, Santer RM, Paula-Barbosa MM, Gundersen HJ (1995) Age and sex do not affect the volume, cell numbers, or cell size of the suprachiasmatic nucleus of the rat: an unbiased stereological study. J Comp Neurol 361:585–601

    Article  CAS  PubMed  Google Scholar 

  • Manchanda S, Mishra R, Singh R, Kaur T, Kaur G (2016) Aqueous leaf extract of Withania somnifera as a potential neuroprotective agent in sleep-deprived rats: a mechanistic study. Mol Neurobiol [ePub ahead of print]

    Google Scholar 

  • Manikonda PK, Jagota A (2012) Melatonin administration differentially affects age-induced alterations in daily rhythms of lipid peroxidation and antioxidant enzymes in male rat liver. Biogerentology 13:511–524

    Article  CAS  Google Scholar 

  • Mattam U, Jagota A (2014) Differential role of melatonin in restoration of age-induced alterations in daily rhythms of expression of various clock genes in suprachiasmatic nucleus of male Wistar rats. Biogerentology 15:257–268

    Article  CAS  Google Scholar 

  • Mattam U, Jagota A (2015) Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology 16:109–123

    Article  CAS  PubMed  Google Scholar 

  • Mishra K, Ojha H, Chaudhury NK (2012) Estimation of antiradical properties of antioxidants using DPPH assay: a critical review and results. Food Chem 130:1036–1043

    Article  CAS  Google Scholar 

  • Miyata S, Noda A, Iwamoto K, Kawano N, Okuda M, Ozaki N (2013) Poor sleep quality impairs cognitive performance in older adults. J Sleep Res 22:535–541

    Article  PubMed  Google Scholar 

  • Musiek ES (2015) Circadian clock disruption in neurodegenerative diseases: cause and effect? Front Pharmacol 6:29

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakahata Y, Sahar S, Astarita G, Kaluzova M, Sassone-Corsi P (2009) Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324:654–657

    Article  CAS  PubMed  Google Scholar 

  • Panchawat S (2011) In vitro free radical scavenging activity of leaves extracts of Withania somnifera. Rec Res Sci Tec 3:40–43

    Google Scholar 

  • Park K, Kang HM (2004) Cloning and circadian expression of rat Cry1. Mol Cells 18:256–260

    CAS  PubMed  Google Scholar 

  • Partch CL, Green CB, Takahashi JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:90–99

    Article  CAS  PubMed  Google Scholar 

  • Prakash J, Chouhan S, Yadav SK, Westfall S, Rai SN, Singh SP (2014) Withania somnifera alleviates parkinsonian phenotypes by inhibiting apoptotic pathways in dopaminergic neurons. Neurochem Res 39:2527–2536

    Article  CAS  PubMed  Google Scholar 

  • Quintero JE, Kuhlman SJ, McMahon DG (2003) The biological clock nucleus: a multiphasic oscillator network regulated by light. J Neurosci 23:8070–8076

    CAS  PubMed  Google Scholar 

  • RajaSankar S, Manivasagam T, Sankar V, Prakash S, Muthusamy R, Krishnamurti A, Surendran S (2009) Withania somnifera root extract improves catecholamines and physiological abnormalities seen in a Parkinson’s disease model mouse. J Ethnopharmacol 125:369–373

    Article  CAS  PubMed  Google Scholar 

  • Rakshit K, Giebultowicz JM (2013) Cryptochrome restores dampened circadian rhythms and promotes healthspan in aging Drosophila. Aging cell 12:752–762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy VDK, Jagota A (2014) Effect of restricted feeding on nocturnality and daily leptin rhythms in OVLT in aged male Wistar rats. Biogerontology 15:245–256

    Article  CAS  PubMed  Google Scholar 

  • Reddy MY, Jagota A (2015) Melatonin has differential effects on age-induced stoichiometric changes in daily chronomics of serotonin metabolism in SCN of male Wistar rats. Biogerontology 16:285–302

    Article  CAS  PubMed  Google Scholar 

  • Reiter RJ, Tan DX, Fuentes-Broto L (2010) Melatonin: a multitasking molecule. Prog Brain Res 181:127–151

    Article  CAS  PubMed  Google Scholar 

  • Sato TK, Yamada RG, Ukai H, Baggs JE, Miraglia LJ, Kobayashi TJ, Welsh DK, Kay SA, Ueda HR, Hogenesch JB (2006) Feedback repression is required for mammalian circadian clock function. Nat Genet 38:312–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigl V (1997) Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int 30:181–190

    Article  CAS  PubMed  Google Scholar 

  • Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E, Khanna P, Jain SC, Thakur SS, Ravindranath V (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci 109:3510–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sengupta S, Yang G, O’Donnell JC, Hinson MD, McCormack SE, Falk MJ, La P, Robinson MB, Williams ML, Yohannes MT, Polyak E, Nakamaru-Ogiso E, Dennery PA (2016) The circadian gene Rev-erbα improves cellular bioenergetics and provides preconditioning for protection against oxidative stress. Free Radic Biol Med 93:177–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shah PC, Trivedi NA, Bhatt JD, Hemavathi KG (2006) Effect of Withania somnifera on forced swimming test induced immobility in mice and its interaction with various drugs. Indian J Physiol Pharmacol 50:409–415

    CAS  PubMed  Google Scholar 

  • Shah N, Kataria H, Kaul SC, Ishii T, Kaur G, Wadhwa R (2009) Effect of the alcoholic extract of Ashwagandha leaves and its components on proliferation, migration, and differentiation of glioblastoma cells: combinational approach for enhanced differentiation. Cancer Sci 100:1740–1747

    Article  CAS  PubMed  Google Scholar 

  • Shah N, Singh R, Sarangi U, Saxena N, Chaudhary A, Kaur G, Kaul SC, Wadhwa R (2015) Combinations of Ashwagandha leaf extracts protect brain-derived cells against oxidative stress and induce differentiation. PloS One 10:e0120554

    Article  PubMed  PubMed Central  Google Scholar 

  • Sohal RS, Orr WC (2012) The redox stress hypothesis of aging. Free Radic Biol Med 52:539–555

    Article  CAS  PubMed  Google Scholar 

  • Soman S, Korah PK, Jayanarayanan S, Mathew J, Paulose CS (2012) Oxidative stress induced NMDA receptor alteration leads to spatial memory deficits in temporal lobe epilepsy: ameliorative effects of Withania somnifera and Withanolide A. Neurochem Res 37:1915–1927

    Article  CAS  PubMed  Google Scholar 

  • Travnickova-Bendova Z, Cermakian N, Reppert SM, Sassone-Corsi P (2002) Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc Natl Acad Sci 99:7728–7733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S (2005) System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet 37:187–192

    Article  CAS  PubMed  Google Scholar 

  • Ukai-Tadenuma M, Yamada RG, Xu H, Ripperger JA, Liu AC, Ueda HR (2011) Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell 144:268–281

    Article  CAS  PubMed  Google Scholar 

  • Verma SK, Kumar A (2011) Therapeutic uses of Withania somnifera (Ashwagandha) with a note on withanolides and its pharmacological actions. Asian J Pharma Clin Res 4:1–4

    CAS  Google Scholar 

  • Videnovic A, Noble C, Reid KJ, Peng J, Turek FW, Marconi A, Rademaker AW, Simuni T, Zadikoff C, Zee PC (2014) Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA neurol 71:463–469

    Article  PubMed  PubMed Central  Google Scholar 

  • Vinod Ch, Jagota A (2016) Daily NO rhythms in peripheral clocks on aging in male Wistar rats: Protective effects of exogenous melatonin. Biogerontology 17:859–871

    Google Scholar 

  • Wadhwa R, Konar A, Kaul SC (2016) Nootropic potential of Ashwagandha leaves: beyond traditional root extracts. Neurochem Int 95:109–118

    Article  CAS  PubMed  Google Scholar 

  • Weinert D (2000) Age-dependent changes of the circadian system. Chronobiol Int 17:261–283

    Article  CAS  PubMed  Google Scholar 

  • Welsh DK, Takahashi JS, Kay SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72:551–577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widodo N, Shah N, Priyandoko D, Ishii T, Kaul SC, Wadhwa R (2009) Deceleration of senescence in normal human fibroblasts by withanone extracted from ashwagandha leaves. J Gerontol A Biol Sci Med Sci 64:1031–1038

    Article  PubMed  Google Scholar 

  • Yan L, Takekida S, Shigeyoshi Y, Okamura H (1999) Per1 and Per2 gene expression in the rat suprachiasmatic nucleus: circadian profile and the compartment-specific response to light. Neuroscience 94:141–150

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Wright CJ, Hinson MD, Fernando AP, Sengupta S, Biswas C, La P, Dennery PA (2014) Oxidative stress and inflammation modulate Rev-erbα signaling in the neonatal lung and affect circadian rhythmicity. Antioxid Redox Signal 21:17–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yonei Y, Hattori A, Tsutsui K, Okawa M, Ishizuka B (2010) Effects of melatonin: basics studies and clinical applications. Anti-Aging Med 7:85–91

    Article  Google Scholar 

  • Zhang H, Davies KJ, Forman HJ (2015) Oxidative stress response and Nrf2 signaling in aging. Free Radic Biol Med 88:314–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou JN, Hofman MA, Swaab DF (1995) VIP neurons in the human SCN in relation to sex, age, and Alzheimer’s disease. Neurobiol Aging 16:571–576

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The work is supported by ICMR (Ref. No. 55/7/2012-/BMS) and UPE grants to AJ. DST INSPIRE fellowship to KK is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Jagota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Jagota, A., Kowshik, K. (2017). Therapeutic Effects of Ashwagandha in Brain Aging and Clock Dysfunction. In: Kaul, S., Wadhwa, R. (eds) Science of Ashwagandha: Preventive and Therapeutic Potentials. Springer, Cham. https://doi.org/10.1007/978-3-319-59192-6_21

Download citation

Publish with us

Policies and ethics