Skip to main content

The Effects of Withaferin A on Normal and Malignant Immune Cells

  • Chapter
  • First Online:
Book cover Science of Ashwagandha: Preventive and Therapeutic Potentials

Abstract

Ashwagandha, an ayurvedic medicinal plant, has been found to be a major contributor in treating medical ailments. Ayurveda is one of the world’s oldest traditional medical systems originated in India through various indigenous theories, beliefs and experiences. Often translated as science of “ayus” (life) and “ved” (knowledge), it emphasizes the use of herbs and their derivatives for prevention of disease, rejuvenation of body systems, and improving the quality of life. In this chapter, we will discuss some of the immuno-modulatory effects of withaferin A (WFA) as well as its growth-inhibitory effects on B cell lymphoma, leukemia and myelodysplastic syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarwal R, Diwanay S, Patki P, Patwardhan B (1999) Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation. J Ethnopharmacol 67:27–35

    Article  CAS  PubMed  Google Scholar 

  • Bargagna-Mohan P, Hamza A, Kim YE, Khuan Abby Ho Y, Mor-Vaknin N, Wendschlag N, Liu J, Evans RM, Markovitz DM, Zhan CG, Kim KB, Mohan R (2007) The tumor inhibitor and antiangiogenic agent withaferin a targets the intermediate filament protein vimentin. Chem Biol 14:623–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R, Russo G, Hardy RR, Croce CM (2002) Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci U S A 99:6955–6960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2(10):907–916

    Article  CAS  PubMed  Google Scholar 

  • Caplan AJ, Mandal AK, Theodoraki MA (2007) Molecular chaperones and protein kinase quality control. Trends Cell Biol 17:87–92

    Article  CAS  PubMed  Google Scholar 

  • Chiorazzi N, Rai KR, Ferrarini M (2005) Chronic lymphocytic leukemia. N Engl J Med 352:804–815

    Article  CAS  PubMed  Google Scholar 

  • Davis L, Kuttan G (1999) Effect of Withania somnifera on cytokine production in normal and cyclophosphamide treated mice. Immunopharmacol Immunotoxicol 21:695–703

    Article  CAS  PubMed  Google Scholar 

  • Davis L, Kuttan G (2000) Immunomodulatory activity of Withania somnifera. J Ethnopharmacol 71:193–200

    Article  CAS  PubMed  Google Scholar 

  • Davis RE, Brown KD, Siebenlist U, Staudt LM (2001) Constitutive nuclear factor kappaB activity is required for survival of activated B cell-like diffuse large B cell lymphoma cells. J Exp Med 194:1861–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gambhir L, Checker R, Sharma D, Thoh M, Patil A, Degani M, Gota V, Sandur SK (2015) Thiol dependent NF-kappaB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A. Toxicol Appl Pharmacol 289:297–312

    Article  CAS  PubMed  Google Scholar 

  • Grover A, Shandilya A, Punetha A, Bisaria VS, Sundar D (2010) Inhibition of the NEMO/IKKbeta association complex formation, a novel mechanism associated with the NF-kappaB activation suppression by Withania somnifera's key metabolite withaferin A. BMC Genomics 11(Suppl 4):S25

    Article  PubMed  PubMed Central  Google Scholar 

  • Gururajan M, Jennings CD, Bondada S (2006) Cutting edge: constitutive B cell receptor signaling is critical for basal growth of B lymphoma. J Immunol 176:5715–5719

    Article  CAS  PubMed  Google Scholar 

  • Gururajan M, Dasu T, Shahidain S, Jennings CD, Robertson DA, Rangnekar VM, Bondada S (2007) Spleen tyrosine kinase (Syk), a novel target of curcumin, is required for B lymphoma growth. J Immunol 178:111–121

    Article  CAS  PubMed  Google Scholar 

  • Howlader NNA, Krapcho M, Garshell J, Miller D, Altekruse SF, Kosary CL, Yu M, Ruhl J, Tatalovich Z, Mariotto A, Lewis DR, Chen HS, Feuer EJ, Cronin KA (2013) SEER cancer statistics review, 1975–2011. National Cancer Institute Bethesda, Maryland (based on November 2013 SEER data submission)

    Google Scholar 

  • Howlader N, Morton LM, Feuer EJ, Besson C, Engels EA (2016) Contributions of subtypes of non-Hodgkin lymphoma to mortality trends. Cancer Epidemiol Biomark Prev 25:174–179

    Article  Google Scholar 

  • Iuvone T, Esposito G, Capasso F, Izzo AA (2003) Induction of nitric oxide synthase expression by Withania somnifera in macrophages. Life Sci 72:1617–1625

    Article  CAS  PubMed  Google Scholar 

  • Jackson SS, Oberley C, Hooper CP, Grindle K, Wuerzberger-Davis S, Wolff J, McCool K, Rui L, Miyamoto S (2015) Withaferin A disrupts ubiquitin-based NEMO reorganization induced by canonical NF-kappaB signaling. Exp Cell Res 331:58–72

    Article  CAS  PubMed  Google Scholar 

  • Kaileh M, Vanden Berghe W, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G (2007) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha S, Soni VK, Singh PK, Bano N, Kumar A, Sangwan RS, Misra-Bhattacharya S (2012) Withania somnifera Chemotypes NMITLI 101R, NMITLI 118R, NMITLI 128R and withaferin A protect Mastomys coucha from Brugia malayi infection. Parasite Immunol 34:199–209

    Article  CAS  PubMed  Google Scholar 

  • Ladics GS (2007) Primary immune response to sheep red blood cells (SRBC) as the conventional T-cell dependent antibody response (TDAR) test. J Immunotoxicol 4:149–152

    Article  PubMed  Google Scholar 

  • Lee IC, Choi BY (2016) Withaferin-A--A natural anticancer agent with Pleitropic mechanisms of action. Int J Mol Sci 17:290

    Article  PubMed  PubMed Central  Google Scholar 

  • Malik F, Singh J, Khajuria A, Suri KA, Satti NK, Singh S, Kaul MK, Kumar A, Bhatia A, Qazi GN (2007) A standardized root extract of Withania somnifera and its major constituent withanolide-A elicit humoral and cell-mediated immune responses by up regulation of Th1-dominant polarization in BALB/c mice. Life Sci 80:1525–1538

    Article  CAS  PubMed  Google Scholar 

  • Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS, Mandal C (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464

    Article  CAS  PubMed  Google Scholar 

  • McKenna MK, Gachuki BW, Alhakeem SS, Oben KN, Rangnekar VM, Gupta RC, Bondada S (2015) Anti-cancer activity of withaferin A in B-cell lymphoma. Cancer Biol Ther 16:1088–1098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mishra LC, Singh BB, Dagenais S (2000) Scientific basis for the therapeutic use of Withania somnifera (ashwagandha): a review. Altern Med Rev 5:334–346

    CAS  PubMed  Google Scholar 

  • Mohan R, Hammers HJ, Bargagna-Mohan P, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122

    Article  CAS  PubMed  Google Scholar 

  • Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    CAS  PubMed  Google Scholar 

  • Oh JH, Kwon TK (2009) Withaferin A inhibits tumor necrosis factor-alpha-induced expression of cell adhesion molecules by inactivation of Akt and NF-kappaB in human pulmonary epithelial cells. Int Immunopharmacol 9:614–619

    Article  CAS  PubMed  Google Scholar 

  • Oh JH, Lee TJ, Park JW, Kwon TK (2008) Withaferin A inhibits iNOS expression and nitric oxide production by Akt inactivation and down-regulating LPS-induced activity of NF-kappaB in RAW 264.7 cells. Eur J Pharmacol 599:11–17

    Article  CAS  PubMed  Google Scholar 

  • Saha S, Islam MK, Shilpi JA, Hasan S (2013) Inhibition of VEGF: a novel mechanism to control angiogenesis by Withania somnifera’s key metabolite Withaferin A. In Silico Pharmacol 1:11

    Article  PubMed  PubMed Central  Google Scholar 

  • Samadi AK (2015) Potential anticancer properties and mechanisms of action of Withanolides. The Enzymes 37:73–94

    Article  CAS  PubMed  Google Scholar 

  • Shaffer AL 3rd, Young RM, Staudt LM (2012) Pathogenesis of human B cell lymphomas. Annu Rev Immunol 30:565–610

    Article  CAS  PubMed  Google Scholar 

  • Shohat B, Kirson I, Lavie D (1978) Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide E. Biomedicine 28:18–24

    CAS  PubMed  Google Scholar 

  • Stevenson FK, Krysov S, Davies AJ, Steele AJ, Packham G (2011) B-cell receptor signaling in chronic lymphocytic leukemia. Blood 118:4313–4320

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi CD, Gupta R, Kushawaha PK, Mandal C, Misra Bhattacharya S, Dube A (2014) Efficacy of Withania somnifera chemotypes NMITLI – 101R, 118R and Withaferin A against experimental visceral leishmaniasis. Parasite Immunol 36:253–265

    Article  CAS  PubMed  Google Scholar 

  • Vanden Berghe W, Sabbe L, Kaileh M, Haegeman G, Heyninck K (2012) Molecular insight in the multifunctional activities of Withaferin A. Biochem Pharmacol 84:1282–1291

    Article  Google Scholar 

  • Widodo N, Shah N, Priyandoko D, Ishii T, Kaul SC, Wadhwa R (2009) Deceleration of senescence in normal human fibroblasts by withanone extracted from ashwagandha leaves. J Gerontol A Biol Sci Med Sci 64:1031–1038

    Article  PubMed  Google Scholar 

  • Young RM, Staudt LM (2013) Targeting pathological B cell receptor signalling in lymphoid malignancies. Nat Rev Drug Discov 12:229–243

    Article  CAS  PubMed  Google Scholar 

  • Yu Y, Hamza A, Zhang T, Gu M, Zou P, Newman B, Li Y, Gunatilaka AA, Zhan CG, Sun D (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79:542–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subbarao Bondada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Alhakeem, S.S. et al. (2017). The Effects of Withaferin A on Normal and Malignant Immune Cells. In: Kaul, S., Wadhwa, R. (eds) Science of Ashwagandha: Preventive and Therapeutic Potentials. Springer, Cham. https://doi.org/10.1007/978-3-319-59192-6_11

Download citation

Publish with us

Policies and ethics