Skip to main content

Phytochemical Genomics of Ashwagandha

  • Chapter
  • First Online:
Science of Ashwagandha: Preventive and Therapeutic Potentials

Abstract

Withania somnifera due to its characteristic secondary metabolite content is of valuable medicinal significance and thus various omics approaches have been recently gaining lots of interest. Present updates had revealed various key enzymes involved in withanolide biosynthetic pathway. Molecular markers (SSRs) resources have also been established and have provided leads to study intra and inter-specific gene diversity. Various in-vitro studies have been conducted to improve the withanolide content in this important plant. Further, emerging metabolomic area like phytochemical genomics has also been applied in case of Withania somnifera for metabolite detection and its structural validation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afendi FM, Okada T, Yamazaki M, Hirai-Morita A, Nakamura Y, Nakamura K, Ikeda S, Takahashi H, Altaf-Ul-Amin M, Darusman LK, Saito K, Kanaya S (2012) KNApSAcK family databases: integrated metabolite – plant species databases for multifaceted plant research. Plant Cell Physiol 53:e1

    Article  CAS  PubMed  Google Scholar 

  • Ahmad H, Khandelwal K, Samuel SS, Tripathi S, Mitra K, Sangwan RS, Shukla R, Dwivedi AK (2015) Neuro-protective potential of a vesicular system of a standardized of a new chemotype of Withania somnifera Dunal (NMITLI118RT+) against cerebral stroke in rats. Drug Deliv 23:2630–2641

    PubMed  Google Scholar 

  • Akhtar N, Gupta P, Sangwan NS, Sangwan RS, Trivedi PK (2013) Cloning and functional characterization of 3-hydroxy-3-methylglutaryl coenzyme A reductase gene from Withania somnifera: an important medicinal plant. Protoplasma 250(2):613–622

    Google Scholar 

  • Alam N, Hossain M, Mottalib MA, Sulaiman SA, Gan SH, Khalil MI (2012) Methanolic extracts of Withania somnifera leaves, fruits and roots possess antioxidant properties and antibacterial activities. BMC Complement Altern Med 12(1):175

    Article  PubMed  PubMed Central  Google Scholar 

  • Alba R, Payton P, Fei Z, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alfaifi MY, Saleh KA, El-Boushnak MA, Elbehairi SEI, Alshehri MA, Shati AA (2016) Antiproliferative activity of the Methanolic extract of Withania somnifera leaves from Faifa Mountains, Southwest Saudi Arabia, against several human cancer cell lines. Asian Pac J Cancer Prev 17(5):2723–2726

    PubMed  Google Scholar 

  • Bähr V, Hänsel R (1982) Immunomodulating Properties of 5, 20α (R)-Dihydroxy-6α, 7α-epoxy-1-oxo-(5α)-witha-2, 24-dienolide and Solasodine. Planta Med 44(01):32–33

    Article  PubMed  Google Scholar 

  • Baitharu I, Jain V, Deep SN, Hota KB, Hota SK, Prasad D, Ilavazhagan G (2013) Withania somnifera root extract ameliorates hypobaric hypoxia induced memory impairment in rats. J ethnopharmacol 145(2):431–441

    Article  PubMed  Google Scholar 

  • Baitharu I, Jain V, Deep SN, Shroff S, Sahu JK, Naik PK, Ilavazhagan G (2014) Withanolide A prevents neurodegeneration by modulating hippocampal glutathione biosynthesis during hypoxia. PLoS One 9(10):e105311

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baldi A, Singh D, Dixit VK (2008) Dual elicitation for improved production of withaferin A by cell suspension cultures of Withania somnifera. Appl Biochem Biotechnol 151:556–564

    Article  CAS  PubMed  Google Scholar 

  • Bandyopadhyay M, Jha S, Tepfer D (2007) Changes in morphological phenotypes and withanolide composition of Ri-transformed roots of Withania somnifera. Plant Cell Rep 26(5):599–609

    Article  CAS  PubMed  Google Scholar 

  • Bharti SK, Bhatia A, Tewari SK, Sidhu OP, Roy R (2011) Application of HR-MAS NMR spectroscopy for studying chemotype variations of Withania somnifera (L) Dunal. Magn Reson Chem 49:659–667

    Article  CAS  PubMed  Google Scholar 

  • Bhat WW, Lattoo SK, Razdan S, Dhar N, Rana S, Dhar RS et al (2012) Molecular cloning, bacterial expression and promoter analysis of squalene synthase from Withania somnifera (L.) Dunal. Gene 499(1):25–36

    Article  CAS  PubMed  Google Scholar 

  • Bhatia A, Bharti SK, Tewari SK, Sidhu OP, Roy R (2013) Metabolic profiling for studying chemotype variations in Withania somnifera (L) Dunal fruits using GC–MS and NMR spectroscopy. Phytochemistry 93:105–115

    Article  CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Satyan KS, Ghosal S (1997) Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol 35:236–239

    CAS  PubMed  Google Scholar 

  • Bhattarai JP, Han SK (2014) Phasic and tonic type A γ-Aminobutryic acid receptor mediated effect of Withania somnifera on mice hippocampal CA1 pyramidal Neurons. J Ayurveda and Integrative Med 5(4):216

    Article  Google Scholar 

  • Bhattarai JP, Park SJ, Han SK (2013) Potentiation of NMDA receptors by Withania somnifera on hippocampal CA1 pyramidal neurons. Am J Chin Med 41(03):503–513

    Article  CAS  PubMed  Google Scholar 

  • Bisht P, Rawat V (2014) Antibacterial activity of Withania somnifera against Gram-positive isolates from pus samples. Ayu 35(3):330

    Article  PubMed  PubMed Central  Google Scholar 

  • Biswal BM, Sulaiman SA, Ismail HC, Zakaria H, Musa KI (2013) Effect of Withania somnifera (Ashwagandha) on the development of chemotherapy-induced fatigue and quality of life in breast cancer patients. Integrative Cancer Therapies 12(4):312–322

    Article  CAS  PubMed  Google Scholar 

  • Bolleddula JFW, Vareed SK, Nair MG (2012) Identification of metabolites in Withania sominfera fruits by liquid chromatography and high-resolution mass spectrometry. Rapid Commun Mass Spectrom 26:1277–1290

    Article  CAS  PubMed  Google Scholar 

  • Budhiraja RD, Sudhir S, Garg KN (1984) Antiinflammatory activity of 3 β -Hydroxy-2, 3-dihydro-withanolide F. Planta Med 50(02):134–136

    Article  CAS  PubMed  Google Scholar 

  • Budhiraja RD, Garg KN, Sudhir S, Arora B (1986) Protective effect of 3-ss-hydroxy-2, 3-dihydrowithanolide F against CCl4-induced hepatotoxicity. Planta Med 52(01):28–29

    Article  Google Scholar 

  • Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behavior. Plant Physiol 142:1380–1396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee S, Srivastava S, Khalid A, Singh N, Sangwan RS, Sidhu OP, Roy R, Khetrapal CL, Tuli R (2010) Comprehensive metabolic fingerprinting of Withania somnifera leaf and roots. Phytochemistry 71:1085–1094

    Article  CAS  PubMed  Google Scholar 

  • Chaurasiya ND, Gupta VK, Sangwan RS (2007) Leaf ontogenic phase-related dynamics of withaferin A and withanone biogenesis in Ashwagandha (Withania somnifera Dunal) – an important medicinal herb. J Plant Biol 50:508–513

    Article  Google Scholar 

  • Chaurasiya ND, Uniyal GC, Lal P, Misra L, Sangwan NS, Tuli R, Sangwan RS (2008) Analysis of withanolides in root and leaf of Withania somnifera by HPLC with photodiode array and evaporative light scattering detection. Phytochem Anal 19:148–154

    Article  PubMed  CAS  Google Scholar 

  • Chaurasiya ND, Sangwan RS, Misra LN, Tuli R, Sangwan NS (2009) Metabolic clustering of a core collection of Indian ginseng Withania somnifera Dunal through DNA isoenzyme polypeptide and withanolide profile diversity. Fitoterapia 80:496–505

    Article  CAS  PubMed  Google Scholar 

  • Chaurasiya ND, Sangwan NS, Sabir F, Misra L, Sangwan RS (2012) Withanolide biosynthesis recruits both mevalonate and DOXP pathways of isoprenogenesis in Ashwagandha Withania somnifera L (Dunal). Plant Cell Rep 31:1889–1897

    Article  CAS  PubMed  Google Scholar 

  • Choudhary MI, Hussain S, Yousuf S, Dar A, Mudassar A-u-R (2010) Chlorinated and diepoxy withanolides from Withania somnifera and their cytotoxic effects against human lung cancer cell line. Phytochemistry 71:2205–2209

    Article  CAS  PubMed  Google Scholar 

  • Dasgupta MG, George BS, Bhatia A, Sidhu OP (2014) Characterization of Withania somnifera leaf transcriptome and expression analysis of pathogenesis-related genes during salicylic acid signaling. PLoS One 9:e94803

    Article  CAS  Google Scholar 

  • De Rose F, Marotta R, Poddighe S, Talani G, Catelani T, Setzu MD, Acquas E (2016) Functional and morphological correlates in the drosophila LRRK2 loss-of-function model of Parkinson’s disease: drug effects of Withania somnifera (Dunal) administration. PLoS One 11(1):e0146140

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Devkar ST, Kandhare AD, Zanwar AA, Jagtap SD, Katyare SS, Bodhankar SL, Hegde MV (2016) Hepatoprotective effect of withanolide-rich fraction in acetaminophen-intoxicated rat: decisive role of TNF-α, IL-1β , COX-II and iNOS. Pharm Biol 54(11):2394–2403

    Article  CAS  PubMed  Google Scholar 

  • Dhar RS, Verma V, Suri KA, Sangwan RS, Satti NK, Kumar A, Tuli R, Qazi GN (2006) Phytochemical and genetic analysis in selected chemotypes of Withania somnifera. Phytochemistry 67:2269–2276

    Article  CAS  PubMed  Google Scholar 

  • Dhar N, Rana S, Bhat WW, Razdan S, Pandith SA, Khan S et al (2013) Dynamics of withanolide biosynthesis in relation to temporal expression pattern of metabolic genes in Withania somnifera (L.) Dunal: a comparative study in two morpho-chemovariants. Mol Biol Rep 40(12):7007–7016

    Article  CAS  PubMed  Google Scholar 

  • Dhar N, Rana S, Razdan S, Bhat WW, Hussain A, Dhar RS et al (2014) Cloning and functional characterization of three branch point oxidosqualene cyclases from Withania somnifera (L.) dunal. J Biol Chem 289(24):17249–17267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhar N, Razdan S, Rana S, Bhat WW, Vishwakarma R, Lattoo SK (2015) A decade of molecular understanding of withanolide biosynthesis and in vitro studies in Withania somnifera (L) Dunal: prospects and perspectives for pathway engineering. Front Plant Sci 6:1031

    Article  PubMed  PubMed Central  Google Scholar 

  • Dhiman R, Aggarwal N, Aneja KR, Kaur M (2016) In vitro antimicrobial activity of spices and medicinal herbs against selected microbes associated with juices. Int J microbiol 2016:9015802

    Google Scholar 

  • Doma M, Abayankar G, Reddy VD, Kishor PBK (2012) Carbohydrate and elicitor enhanced withanolide (withaferin A and withanolide A) accumulation in hairy root cultures of Withania somnifera (L). Indian J Exp Biol 50:484–490

    PubMed  Google Scholar 

  • Fatima N, Ahmad N, Anis M (2016) In vitro propagation and conservation of Withania somnifera (Dunal) L. Methods Mol Biol 1391:303–315

    Article  PubMed  Google Scholar 

  • Fridman E, Wang J, Iijima Y, Froehlich JE, Gang DR, Ohlrogge J, Pichersky E (2005) Metabolic genomic and biochemical analyses of glandular trichomes from the wild tomato species Lycopersicon hirsutum identify a key enzyme in the biosynthesis of methylketones. Plant Cell 17:1252–1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorelick J, Rosenberg R, Smotrich A, HanuÅ¡ L, Bernstein N (2015) Hypoglycemic activity of withanolides and elicitated Withania somnifera. Phytochem 116:283–289

    Article  CAS  Google Scholar 

  • Gupta P, Akhtar N, Tewari SK, Sangwan RS, Trivedi PK (2011) Differential expression of farnesyl diphosphate synthase gene from Withania somnifera in different chemotypes and in response to elicitors. Plant Growth Regul 65(1):93–100

    Article  CAS  Google Scholar 

  • Gupta P, Goel R, Pathak S, Srivastava A, Singh SP, Sangwan RS, Asif MH, Trivedi PK (2013) De novo assembly functional annotation and comparative analysis of Withania somnifera leaf and root transcriptomes to identify putative genes involved in the withanolides biosynthesis. PLoS One 8:e62714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta P, Goel R, Agarwal AV, Asif MH, Sangwan NS, Sangwan RS, Trivedi PK (2015) Comparative transcriptome analysis of different chemotypes elucidates withanolide biosynthesis pathway from medicinal plant Withania somnifera. Sci Rep 5:18611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handa SS, Rakesh DD, Vasisht K (2006) Compendium of medicinal and aromatic plants ASIA. ICS UNIDO. Asia, 2, 305

    Google Scholar 

  • Higashi Y, Saito K (2013) Network analysis for gene discovery in plant specialized metabolism. Plant Cell Environ 36:1597–1606

    Article  CAS  PubMed  Google Scholar 

  • Jacob L, Manju RV, Stephen R, Edison LK (2014) Alterations in withanolide production in Withania somnifera (l) Dunal under low light stress. J Plant Sci Res 30:121–123

    Google Scholar 

  • Jadaun JS, Sangwan NS, Narnoliya LK, Tripathi S, Sangwan RS (2016) Withania coagulans tryptophan decarboxylase gene cloning heterologous expression and catalytic characteristics of the recombinant enzyme. Protoplasma 254:181–192

    Article  PubMed  CAS  Google Scholar 

  • Jain SM, Saxena P (2009) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants. In: Methods in molecular biology, vol 1391, 2nd edn. Humana Press, New York, pp 303–315

    Google Scholar 

  • Jayaprakasam B, Padmanabhan K, Nair MG (2010) Withanamides in Withania somnifera fruit protect PC-12 cells from β -amyloid responsible for Alzheimer’s disease. Phytother Res 24(6):859–863

    CAS  PubMed  Google Scholar 

  • Jha AK, Nikbakht M, Capalash N, Kaur J (2014) Demethylation of RARβ 2 gene promoter by Withania somnifera in HeLa cell line. European J Med Plants 4(5):503–510

    Article  Google Scholar 

  • Joung JG, Corbett AM, Fellman SM, Tieman DM, Klee HJ, Giovannoni JJ, Fei Z (2009) Plant MetGenMAP: an integrative analysis system for plant systems biology. Plant Physiol 151:1758–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kabera JN, Semana E, Mussa AR, He X (2014) Plant secondary metabolites: biosynthesis classification function and pharmacological properties. J Pharm Pharmacol 2:377–392

    Google Scholar 

  • Kalidhasan N, Bhagavan NB, Kannan ND (2013) Ultraviolet-B (280–320 nm) enhanced radiation induced changes in secondary metabolites and photosystem-II of medicinal plant Withania somnifera Dunal. J Med Plants Res 7:3112–3120

    Google Scholar 

  • Kelly-Pieper K, Patil SP, Busse P et al (2009) Safety and tolerability of an Antiasthma Herbal Formula (ASHMIâ„¢) in adult subjects with asthma: a randomized, double-blinded, placebo-controlled, dose-escalation Phase I study. J Altern Complement Med 15(7):735–743

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan B, Ahmad SF, Bani S, Kaul A, Suri KA, Satti NK, Qazi GN (2006) Augmentation and proliferation of T lymphocytes and Th-1 cytokines by Withania somnifera in stressed mice. Int Immunopharmacol 6(9):1394–1403

    Article  CAS  PubMed  Google Scholar 

  • Khazal KF, Samuel T, Hill DL, Grubbs CJ (2013) Effect of an extract of Withania somnifera root on estrogen receptor-positive mammary carcinomas. Anticancer Res 33(4):1519–1523

    PubMed  PubMed Central  Google Scholar 

  • Kim HK, Choi YH, Verpoorte R (2011) NMR-based plant metabolomics: where do we stand, where do we go? Trends Biotechnol 29:267–275

    Article  CAS  PubMed  Google Scholar 

  • Konar A, Shah N, Singh R, Saxena N, Kaul SC, Wadhwa R, Thakur MK (2011) Protective role of Ashwagandha leaf extract and its component withanone on scopolamine-induced changes in the brain and brain-derived cells. PLoS One 6(11):e27265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuboyama T, Tohda C, Komatsu K (2014) Effects of Ashwagandha (roots of Withania somnifera) on neurodegenerative diseases. Biol Pharm Bull 37(6):892–897

    Article  CAS  PubMed  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy K (1996) Direct in vitro regeneration of leaf explants of Withania somnifera (L) Dunal. Plant Sci 119:163–168

    Article  CAS  Google Scholar 

  • Kulkarni AA, Thengane SR, Krishnamurthy KV (2000) Direct shoot regeneration from node, internode, hypocotyl and embryo explants of Withania somnifera plant cell. Tiss Org 62:203–209

    Article  Google Scholar 

  • Kushwaha S, Roy S, Maity R, Mallick A, Soni VK, Singh PK, Mandal C (2012a) Chemotypical variations in Withania somnifera lead to differentially modulated immune response in BALB/c mice. Vaccine 30:1083–1093

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha S, Soni VK, Singh PK, Bano N, Kumar A, Sangwan RS, Misra-Bhattacharya S (2012b) Withania somnifera chemotypes NMITLI 101R, NMITLI 118R, NMITLI 128R and withaferin A protect Mastomys coucha from Brugia malayi infection. Parasite Immunol 34:199–209

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha AK, Sangwan NS, Tripathi S, Sangwan RS (2013a) Molecular cloning and catalytic characterization of a recombinant tropine biosynthetic tropinone reductase from Withania coagulans leaf. Gene 516:238–247

    Article  CAS  PubMed  Google Scholar 

  • Kushwaha AK, Sangwan NS, Trivedi PK, Negi AS, Misra L, Sangwan RS (2013b) Tropine forming tropinone reductase gene from Withania somnifera (Ashwagandha): biochemical characteristics of the recombinant enzyme and novel physiological overtones of tissue-wide gene expression patterns. PLoS One 8:e74777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kushwaha S, Roy S, Maity R, Mallick A, Soni VK, Singh PK et al (2013c) Chemotypical variations in Withania somnifera lead to differentially modulated immune response in BALB/c mice. Vaccine 30(6):1083–1093

    Article  CAS  Google Scholar 

  • Lal P, Misra L, Sangwan RS, Tuli R (2006) New withanolides from fresh berries of Withania somnifera. Zeitschrift für Naturforschung B 61:1143–1147

    Article  CAS  Google Scholar 

  • Madina BR, Sharma LK, Chaturvedi P, Sangwan RS, Tuli R (2007) Purification and physico-kinetic characterization of 3β-hydroxy specific sterol glucosyltransferase from Withania somnifera (L) and its stress response. Biochim Biophys Acta 1774:392–402

    Article  CAS  PubMed  Google Scholar 

  • Maliyakkal N, Udupa N, Pai KS, Rangarajan A (2013) Cytotoxic and apoptotic activities of extracts of Withania somnifera and Tinospora cordifolia in human breast cancer cells. Inter J Appl Res in Nat Prod 6(4):1–10

    Google Scholar 

  • Mandal C, Dutta A, Mallick A, Chandra S, Misra L, Sangwan RS, Mandal C (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464

    Article  CAS  PubMed  Google Scholar 

  • Matsuda H, Murakami T, Kishi A, Yoshikawa M (2009) Structures of withanosides i, ii, iii, iv, v, vi, and vii, new withanolide glycosides, from the roots of Indian Withania somnifera Dunal and inhibitory activity for tachyphylaxis to clonidine in isolated Guinea-Pig ileum. Bioorg Med Chem 9:1499–1507

    Article  Google Scholar 

  • Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ, Sakurai T, Shimada Y, Saito K (2010) AtMetExpress development: a phytochemical atlas of Arabidopsis development. Plant Physiol 152:566–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir BA, Mir SA, Koul S (2014a) In vitro propagation and withaferin A production in Withania Ashwagandha, a rare medicinal plant of India. Physiol Mol Biol Plants 20:357–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mir BA, Khazirb J, Hakeemc KR, Kumara A, Koul S (2014b) Withanolides array of Withania Ashwagandha sp. novo populations from India. Indus Crops Prod 59:9–13

    Article  CAS  Google Scholar 

  • Mir BA, Mir SA, Khazir J, Tonfack LB, Cowan DA, Vyas D, Koul S (2015) Cold stress affects antioxidative response and accumulation of medicinally important withanolides in Withania somnifera (L) Dunal. Indus Crops Prod 74:1008–1016

    Article  CAS  Google Scholar 

  • Mirjalili MH, Moyano E, Bonfill M, Cusido RM, Palazón J (2009) Steroidal lactones from Withania somnifera, an ancient plant for novel medicine. Molecules 14:2373–2393

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Sangwan RS, Bansal S, Sangwan NS (2013) Efficient genetic transformation of Withania coagulans (stocks) Dunal mediated by Agrobacterium tumefaciens from leaf explants of in vitro multiple shoot culture. Protoplasma 250:451–458

    Article  CAS  PubMed  Google Scholar 

  • Mishra B, Sangwan RS, Mishra S, Jadaun JS, Sabir F, Sangwan NS (2014) Effect of cadmium stress on inductive enzymatic and nonenzymatic responses of ROS and sugar metabolism in multiple shoot cultures of Ashwagandha (Withania somnifera Dunal). Protoplasma 251:1031–1045

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Bansal S, Mishra B, Sangwan RS, Jadaun JS, Sangwan NS (2016a) RNAi and homologous over-expression based functional approaches reveal triterpenoid synthase gene-cycloartenol synthase is involved in downstream withanolide biosynthesis in Withania somnifera. PLoS One 11:e0149691

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mishra S, Bansal S, Sangwan RS, Sangwan NS (2016b) Genotype independent and efficient Agrobacterium-mediated genetic transformation of the medicinal plant Withania somnifera Dunal. J Plant Biochem Biotechnol 25(2):191–198

    Article  CAS  Google Scholar 

  • Misra L, Lal P, Sangwan RS, Sangwan NS, Uniyal GC, Tuli R (2005) Unusually sulfated and oxygenated steroids from Withania somnifera. Phytochemistry 66:2702–2707

    Article  CAS  PubMed  Google Scholar 

  • Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS, Tuli R (2008) Withanolides from Withania somnifera roots. Phytochemistry 69:1000–1004

    Article  CAS  PubMed  Google Scholar 

  • Misra L, Mishra P, Pandey A, Sangwan RS, Sangwan NS (2012) 1,4-Dioxane and ergosterol derivatives from Withania somnifera roots. J Asian Nat Prod Res 14:39–45

    Article  CAS  PubMed  Google Scholar 

  • Mondal S, Mandal C, Sangwan R, Chandra S, Mandal C (2010) Withanolide D induces apoptosis in leukemia by targeting the activation of neutral sphingomyelinase-ceramide cascade mediated by synergistic activation of c-Jun N-terminal kinase and p38 mitogen-activated protein kinase. Mol Cancer 9:239

    PubMed  PubMed Central  Google Scholar 

  • Mondal S, Bhattacharya K, Mallick A, Sangwan R, Mandal C (2012a) Bak compensated for Bax in p53-null cells to release cytochrome c for the initiation in Withania somnifera. PLoS One 11:e0149691

    Google Scholar 

  • Mondal S, Roy S, Maity R, Mallick A, Sangwan R, Misra-Bhattacharya S, Mandal C (2012b) Withanolide D, carrying the baton of Indian rasayana herb as a lead candidate of antileukemic agent in modern medicine. In: Biochem roles Eukar cell surface Macromol. Springer, New York, pp 295–312

    Chapter  Google Scholar 

  • Muranaka T, Saito K (2013) Phytochemical genomics on the way. Plant Cell Physiol 54:645–646

    Article  CAS  PubMed  Google Scholar 

  • Murthy HN, Praveen N (2012) Influence of macro elements and nitrogen source on adventitious root growth and withanolide-A production in Withania somnifera (L) Dunal. Nat Product Res 26:466–473

    Article  CAS  Google Scholar 

  • Murthy HN, Dijkstra C, Anthony P, White DA, Davey MR, Power JB, Hahn EJ, Paek KY (2008) Establishment of Withania somnifera hairy root cultures for the production of withanolide. J Integ Plant Biol 50:975–981

    Article  CAS  Google Scholar 

  • Nagella P, Murthy HN (2010) Establishment of cell suspension cultures of Withania somnifera for the production of withanolide. A Biores Technol 101:6735–6739

    Article  CAS  Google Scholar 

  • Nakabayashi R, Saito K (2013) Metabolomics for unknown plant metabolites. Anal Bioanal Chem 405:5005–5011

    Article  CAS  PubMed  Google Scholar 

  • Namdeo AG, Sharma A, Yadav KN, Gawande R, Mahadik KR, Lopez-Gresa MP, Kim HK, Choi YH, Verpoorte R (2011) Metabolic characterization of Withania somnifera from different regions of India using NMR spectroscopy. Planta Med 77:1958–1964

    Article  CAS  PubMed  Google Scholar 

  • Nayak S, Kumar S, Satapathy K, Moharana A, Behera B, Barik DP, Acharya L, Mohaptra PK, Jena PK, Naik SK (2013) In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol Plant 35:195–203

    Article  CAS  Google Scholar 

  • Nema R, Khare S, Jain P, Pradhan A (2013) Anticancer activity of Withania somnifera (leaves) flavonoids compound. Int J Pharm Sci Rev Res 19(1):103–106

    CAS  Google Scholar 

  • Noh EJ, Kang MJ, Jeong YJ, Lee JY, Park JH, Choi HJ et al (2016) Withaferin A inhibits inflammatory responses induced by Fusobacterium nucleatum and Aggregatibacter actinomycetemcomitans in macrophages. Mol Med Rep 14(1):983–988

    Article  PubMed  CAS  Google Scholar 

  • Okazaki Y, Saito K (2016) Integrated metabolomics and phytochemical genomics approaches for studies on rice. GigaScience 5:11

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Okazaki Y, Otsuki H, Narisawa T, Kobayashi M, Sawai S, Kamide Y, Kusano M, Aoki T, Hirai MY, Saito K (2013) A new class of plant lipid is essential for protection against phosphorus depletion. Nat Commun 4:1510

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Palliyaguru DL, Singh SV, Kensler TW (2016) Withania somnifera: from prevention to treatment of cancer. Mol Nutr Food Res 60(6):1342–1353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pandit S, Chang KW, Jeon JG (2013) Effects of Withania somnifera on the growth and virulence properties of Streptococcus mutans and Streptococcus sobrinus at sub-MIC levels. Anaerobe 19:1–8

    Article  CAS  PubMed  Google Scholar 

  • Parmar EK, Fougat RS, Patel CB, Zala HN, Patel MA, Patel SK, Kumar S (2015) Validation of dbEST-SSRs and transferability of some other solanaceous species SSR in ashwagandha [Withania somnifera (L.) Dunal]. 3 Biotech 5(6):933

    Article  PubMed  PubMed Central  Google Scholar 

  • Pati PK, Sharma M, Salar RK, Sharma A, Gupta AP, Singh B (2008) Studies on leaf spot disease of Withania somnifera and its impact on secondary metabolites. Indian J Microbiol 48:432–437

    Article  CAS  PubMed  Google Scholar 

  • Petrovska BB (2012) Historical review of medicinal plants? Usage. Pharmacogn Rev 6(11):1

    Article  PubMed  PubMed Central  Google Scholar 

  • Praveen N, Murthy HN (2010) Production of withanolide-A from adventitious root cultures of Withania somnifera. Acta Physiol Plant 32:1017–1022

    Article  CAS  Google Scholar 

  • Praveen N, Murthy HN (2012) Synthesis of withanolide a depends on carbon source and medium pH in hairy root cultures of Withania somnifera. Ind Crop Prod 35:241–243

    Article  CAS  Google Scholar 

  • Rajasekar S, Elango R (2011) Effect of microbial consortium on plant growth and improvement of alkaloid content in Withania somnifera (Ashwagandha). Curr. Bot. 2:27–30

    Google Scholar 

  • Rana S, Lattoo SK, Dhar N, Razdan S, Bhat WW, Dhar RS, Vishwakarma R (2013) NADPH-cytochrome P450 reductase: molecular cloning and functional characterization of two paralogs from Withania somnifera (L.) Dunal. PLoS One 8(2):e57068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rana S, Bhat WW, Dhar N, Pandith SA, Razdan S, Vishwakarma R, Lattoo SK (2014) Molecular characterization of two A-type P450s, WsCYP98A and WsCYP76A from Withania somnifera (L.) Dunal: expression analysis and withanolide accumulation in response to exogenous elicitations. BMC Biotechnol 14(1):89

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rani G, Grover IS (1999) In vitro callus induction and regeneration studies in Withania somnifera. Plant Cell Tissue Org Cult 57:23–27

    Article  Google Scholar 

  • Ravindran R, Sharma N, Roy S, Thakur AR, Ganesh S, Kumar S et al (2015) Interaction studies of Withania somnifera ’s key metabolite Withaferin A with different receptors associated with cardiovascular disease. Current Computer-Aided Drug Design 11(3):212–221

    Article  CAS  PubMed  Google Scholar 

  • Ray S, Jha S (2001) Production of withaferin A in shoot cultures of Withania somnifera. Planta Med 67:432–436

    Article  CAS  PubMed  Google Scholar 

  • Razdan S, Bhat WW, Rana S, Dhar N, Lattoo SK, Dhar RS,Vishwakarma RA (2013) Molecular characterization and promoter analysis of squalene epoxidase gene from Withania somnifera (L.) Dunal. Mol Biol Rep:1–12

    Google Scholar 

  • Razdan S, Bhat WW, Dhar N, Rana S, Pandith SA, Wani TA et al (2016) Molecular characterization of DWF1 from Withania somnifera (L.) Dunal: its implications in withanolide biosynthesis. J Plant Biochem Biotechnology 1(26):52–63

    Google Scholar 

  • Rober SC (2007) Production and engineering of terpenoids in plant cell culture. Nat Chem Biol 3:387–395

    Article  CAS  Google Scholar 

  • Roja G, Heble M, Sipahimalani A (1991) Tissue cultures of Withania somnifera: morphogenesis and withanolide synthesis. Phytother Res 5:185–187

    Article  CAS  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Sangwan RS (2008a) In vitro Withanolide production by Withania somnifera L cultures. Z Naturforsch C 63:409–412

    Article  CAS  PubMed  Google Scholar 

  • Sabir F, Sangwan NS, Chaurasiya ND, Misra LN, Tuli R, Sangwan RS (2008b) Rapid micropropagation of Withania somnifera L accessions from axillary meristems. J Herbs Spices Med Plant 13:123–133

    Article  CAS  Google Scholar 

  • Sabir F, Sangwan RS, Jyoti SJ, Misra LN, Pathak N, Sangwan NS (2011) Biotransformation of withanolides by cell suspension cultures of Withania somnifera (Dunal). Plant Biotechnol Rep 5:127–134

    Article  Google Scholar 

  • Sabir, F., Sangwan, R. S., Kumar, R., & Sangwan, N. S. (2012). Salt stress-induced responses in growth and metabolism in callus cultures and differentiating in vitro shoots of Indian ginseng (Withania somnifera Dunal). Journal of plant growth regulation, 31(4), 537–548

    Google Scholar 

  • Sabir F, Mishra S, Sangwan RS, Jadaun JS, Sangwan NS (2013) Qualitative and quantitative variations in withanolides and expression of some pathway genes during different stages of morphogenesis in Withania somnifera Dunal. Protoplasma 250:539–549

    Article  CAS  PubMed  Google Scholar 

  • Saema S, Rahman LU, Singh R, Niranjan A, Ahmad IZ, Misra P (2016) Ectopic overexpression of WsSGTL1, a sterol glucosyltransferase gene in Withania somnifera, promotes growth, enhances glycowithanolide and provides tolerance to abiotic and biotic stresses. Plant Cell Rep 35(1):195

    Google Scholar 

  • Saito K (2013) Phytochemical genomics – a new trend. Curr Opin Plant Biol 16:373–380

    Article  CAS  PubMed  Google Scholar 

  • Sanchita SR, Mishra A, Dhawan SS, Shirke PA, Gupta MM, Sharma A (2015) Physiological performance secondary metabolite and expression profiling of genes associated with drought tolerance in Withania somnifera. Protoplasma 252:1439–1450

    Article  CAS  PubMed  Google Scholar 

  • Sangwan NS, Sangwan RS (2013) Applied plant cell biology secondary metabolites of traditional medical plants: a case study of Ashwagandha (Withania somnifera). Plant Cell Monogr 22:325–367

    Article  CAS  Google Scholar 

  • Sangwan NS, Sangwan RS (2014) Secondary metabolites of traditional medical plants: a case study of Ashwagandha (Withania somnifera). Appl Plant Cell Biol 22:325–367

    Article  CAS  Google Scholar 

  • Sangwan RS, Chaurasia ND, Misra LN, Lal P, Uniyal GC, Sharma R, Sangwan NS, Suri KA, Qazi GN, Tuli R (2004) Phytochemical variability in commercial herbal products and preperations of Withania somnifera (Ashwagandha). Curr Sci 86:461–465

    CAS  Google Scholar 

  • Sangwan RS, Chaurasiya ND, Misra LN, Lal P, Uniyal GC, Sangwan NS, Srivastava AK, Suri KA, Qazi GN, Tuli R (2006) Process for isolation of withaferin-a from plant materials and products there from. US Patent Patent 7,108,870, 19 Sept 2006

    Google Scholar 

  • Sangwan RS, Chaurasiya ND, Lal P (2007) Withanolide a biogeneration in in vitro shoot cultures of Ashwagandha (Withania somnifera Dunal) a main medicinal plant in Ayurveda. Chem Pharm Bull 55:1371–1375

    Article  CAS  PubMed  Google Scholar 

  • Sangwan RS, Das Chaurasiya N, Lal P, Misra L, Tuli R, Sangwan NS (2008) Withanolide A is inherently de novo biosynthesized in roots of the medicinal plant Ashwagandha (Withania somnifera). Physiol Plant 133:278–287

    Article  CAS  PubMed  Google Scholar 

  • Sawada Y, Nakabayashi R, Yamada Y, Suzuki M, Sato M, Sakata A, Akiyama K, Sakurai T, Matsuda F, Aoki T, Hirai MY, Saito K (2012) RIKEN tandem mass spectral database (ReSpect) for phytochemicals A plant-specific MS/MS-based data resource and database. Phytochemistry 82:38–45

    Article  CAS  PubMed  Google Scholar 

  • Schauer N, Semel Y, Roessner U (2006) Comprehensive metabolic profiling and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  CAS  PubMed  Google Scholar 

  • Sehgal N, Gupta A, Valli RK, Joshi SD, Mills JT, Hamel E et al (2012) Withania somnifera reverses Alzheimer’s disease pathology by enhancing low-density lipoprotein receptor-related protein in liver. Proc Natl Acad Sci 109(9):3510–3515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sen J, Sharma AK (1991) Micropropagation of Withania somnifera from germinating seeds and shoot tips. Plant Cell Tissue Organ Cult 26:71–73

    Article  CAS  Google Scholar 

  • Senthil K, Wasnik NG, Kim YJ, Yang DC (2010) Generation and analysis of expressed sequence tags from leaf and root of Withania somnifera (Ashwgandha). Mol Biol Rep 37:893–902

    Article  CAS  PubMed  Google Scholar 

  • Senthil K, Jayakodi M, Thirugnanasambantham P, Lee SC, Duraisamy P, Purushotham PM, Rajasekaran K, Nancy Charles S, Mariam Roy I, Nagappan AK, Kim GS, Lee YS, Natesan S, Min TS, Yang TJ (2015) Transcriptome analysis reveals in vitro cultured Withania somnifera leaf and root tissues as a promising source for targeted withanolide biosynthesis. BMC Genomics 16:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharada M, Ahuja A, Suri K, Vij SP, Khajuria RK, Verma V, Kumar A (2007) Withanolide production by in vitro cultures of Withania somnifera and its association with differentiation. Biol Plant 51:161–164

    Article  CAS  Google Scholar 

  • Sharma H, Chandola HM, Singh G, Basisht G (2007) Utilization of Ayurveda in health care: an approach for prevention, health promotion, and treatment of disease. Part 2—Ayurveda in primary health care. J Altern Complement Med 13(10):1135–1150

    Article  PubMed  Google Scholar 

  • Shohat B, Kirson I, Lavie D (1978) Immunosuppressive activity of two plant steroidal lactones withaferin A and withanolide E. Biomedicine 28(1):18–24

    CAS  PubMed  Google Scholar 

  • Shukla DD, Bhattarai N, Pant B (2010) In-vitro mass propagation of Withania somnifera (L) Dunal. Nepal J Sci Technol 11:101–106

    Google Scholar 

  • Siddique AA, Joshi P, Misra L, Sangwan NS, Darokar MP (2014) 5 6-De-epoxy-5-en-7-one-17-hydroxy withaferin A a new cytotoxic steroid from Withania somnifera L Dunal leaves. Nat Prod Res 28:392–398

    Article  CAS  PubMed  Google Scholar 

  • Sil B, Mukherjee C, Jha S, Mitra A (2015) Metabolic shift from withasteroid formation to phenylpropanoid accumulation in cryptogein-cotransformed hairy roots of Withania somnifera (L) Dunal. Protoplasma 252:1097–1110

    Article  CAS  PubMed  Google Scholar 

  • Singh AK, Varshney R, Sharma M (2006) Regeneration of plants from alginate-encapsulated shoot tips of Withania somnifera (L) Dunal a medicinally important plant species. J Plant Physiol 163:220–223

    Article  CAS  PubMed  Google Scholar 

  • Singh P, Guleri R, Singh V, Kaur G, Kataria H, Singh B, Kaur G, Kaul SC, Wadhwa R, Pati PK (2015) Biotechnological interventions in Withania somnifera (L) Dunal. Biotechnol Genet Eng Rev 31:1–20

    Article  PubMed  CAS  Google Scholar 

  • Singh G, Tiwari M, Singh SP, Singh S, Trivedi PK, Misra P (2016) Silencing of sterol glycosyltransferases modulates the withanolide biosynthesis and leads to compromised basal immunity of Withania somnifera. Sci Rep 6:25562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sivanandhan G, Mariashibu TS, Arun M, Rajesh M, Kasthurirengan S, Selvaraj N, Ganapathi A (2011) The effect of polyamines on the efficiency of multiplication and rooting of Withania somnifera (L) Dunal and content of some withanolides in obtained plants. Acta Physiol Plant 33:2279–2288

    Article  CAS  Google Scholar 

  • Sivanandhan G, Arun M, Mayavan S, Rajesh M, Jeyaraj M, Dev GK, Manickavasagam M, Selvaraj N, Ganapathi A (2012a) Optimization of elicitation conditions with methyl jasmonate and salicylic acid to improve the productivity of withanolides in the adventitious root culture of Withania somnifera (L) Dunal. Appl Biochem Biotechnol 168:681–696

    Article  CAS  PubMed  Google Scholar 

  • Sivanandhan G, Arun M, Mayavan S, Rajesh M, Mariashibu TS, Manickavasagam M, Selvaraj N, Ganapathi A (2012b) Chitosan enhances withanolides production in adventitious root cultures of Withania somnifera (L) Dunal. Ind. Crops Prod 37:124–129

    Article  CAS  Google Scholar 

  • Sivanandhan G, Dev GK, Jeyaraj M (2013) A promising approach on biomass accumulation and withanolides production in cell suspension culture of Withania somnifera (L) Dunal. Protoplasma 250:885–898

    Article  CAS  PubMed  Google Scholar 

  • Sivanandhan G, Selvaraj N, Ganapathi A (2014) Enhanced biosynthesis of withanolides by elicitation and precursor feeding in cell suspension culture of Withania somnifera (L) Dunal in shake-flask culture and bioreactor. PLoS One 9:e104005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Siriwardane AS, Dharmadasa RM, Samarasinghe K (2013) Varieties of Withania sommfera (L.) Dunal. Grown in Sri Lanka. Pakistan journal of Bbiological Sciences 16(3):141–144

    Article  CAS  Google Scholar 

  • Srivastava S, Sangwan RS, Tripathi S, Mishra B, Narnoliya LK, Misra LN, Sangwan NS (2015) Light and auxin responsive cytochrome P450s from Withania somnifera Dunal: cloning, expression and molecular modelling of two pairs of homologue genes with differential regulation. Protoplasma 252(6):1421–1437

    Article  CAS  PubMed  Google Scholar 

  • Subramanian SS, Sethi PD (1969) Withaferin–A from Withania somnifera coagulants roots. Current science (India) 38:267–268

    CAS  Google Scholar 

  • Subramanian C, Zhang H, Gallagher R, Hammer G, Timmermann B, Cohen M (2014) Withanolides are potent novel targeted therapeutic agents against adrenocortical carcinomas. World J Surg 38(6):1343

    Article  PubMed  Google Scholar 

  • Supe U, Dhote F, Roymon MG (2006) In vitro plant regeneration of Withania somnifera. Plant Tissue Cult Biotech 16:111–115

    Google Scholar 

  • Takimoto T, Kanbayashi Y, Toyoda T, Adachi Y, Furuta C, Suzuki K et al (2014) 4β -Hydroxywithanolide E isolated from Physalis pruinosa calyx decreases inflammatory responses by inhibiting the NF-κB signaling in diabetic mouse adipose tissue. Int J Obes 38(11):1432–1439

    Article  CAS  Google Scholar 

  • Takshak S, Agrawal SB (2014) Secondary metabolites and phenylpropanoid pathway enzymes as influenced under supplemental ultraviolet-B radiation in Withania somnifera Dunal an indigenous medicinal plant. J Photochem Photobiol 140:332–343

    Article  CAS  Google Scholar 

  • Tavhare SD (2015) Collection practices of medicinal plants vedic ayurvedic and modern perspectives. Int J Pharm Biol Arch 5(5)

    Google Scholar 

  • Thimm O, Blaesing O, Gibon Y (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  CAS  PubMed  Google Scholar 

  • Tieman D, Taylor M, Schauer N, Fernie AR, Hanson AD, Klee HJ (2006) Tomato aromatic amino acid decarboxylases participate in synthesis of the flavor volatiles 2-phenylethanol and 2-phenylacetaldehyde. Proc Natl Acad Sci U S A 103:8287–8292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-view a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138:1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tong X, Zhang H, Timmermann BN (2011) Chlorinated withanolides from Withania somnifera. Phytochem Lett 4:411–414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi V, Verma J (2014) Current updates of indian antidiabetic medicinal plants. Int J Res Pharm Chem 4(1):114–118

    Google Scholar 

  • Tugizimana F, Piater L, Dubery (2013) Plant metabolomics: a new frontier in phytochemical analysis. S Afr J Sci 109(5/6):1–11

    Article  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Urbanczyk-Wochniak E, Baxter C, Kolbe A, Kopka J, Sweetlove LJ, Fernie AR (2005) Profiling of diurnal patterns of metabolite and transcript abundance in potato (Solanum tuberosum) leaves. Planta 221:891–903

    Article  CAS  PubMed  Google Scholar 

  • Van Wyk BE, Wink M (2004) Medicinal plants of the world: an illustrated scientific guide to important medicinal plants and their uses. Timber Press

    Google Scholar 

  • Varghese S, Keshavachandran R, Baby B, Nazeem PA (2014) Genetic transformation in ashwagandha Withania somnifera (L) Dunal for hairy root induction and enhancement of secondary metabolites. J Trop Agri 52:39–46

    CAS  Google Scholar 

  • Wadegaonkar PA, Bhagwat KA, Rai MK (2006) Direct rhizogenesis and establishment of fast growing normal root organ culture of Withania somnifera Dunal. Plant Cell Tissue Organ Cult 84:223–225

    Article  Google Scholar 

  • Wadhwa R, Singh R, Gao R, Shah N, Widodo N, Nakamoto T, Kaul S (2013) Water extract of Ashwagandha leaves has anticancer activity: identification of an active component and its mechanism of action. PLoS One 8(10):e77189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Widodo N, Takagi Y, Shrestha BG, Ishii T, Kaul SC, Wadhwa R (2008) Selective killing of cancer cells by leaf extract of Ashwagandha: components, activity and pathway analyses. Cancer Lett 262(1):37–47

    Article  CAS  PubMed  Google Scholar 

  • Xu YM, Gao S, Bunting DP (2011) Unusual withanolides from aeroponically grown Withania somnifera. Phytochemistry 72:518–522

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neelam S. Sangwan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Sangwan, N.S., Tripathi, S., Srivastava, Y., Mishra, B., Pandey, N. (2017). Phytochemical Genomics of Ashwagandha. In: Kaul, S., Wadhwa, R. (eds) Science of Ashwagandha: Preventive and Therapeutic Potentials. Springer, Cham. https://doi.org/10.1007/978-3-319-59192-6_1

Download citation

Publish with us

Policies and ethics