Advertisement

Conclusions and Future Work

  • James MatthewsEmail author
Chapter
  • 226 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

I began this thesis with the statement that accreting systems and their associated outflows are astrophysically important.

References

  1. Arav N, Becker RH, Laurent-Muehleisen SA, Gregg MD, White RL, Brotherton MS, de Kool M (1999a) What Determines the Depth of Broad Absorption Lines? Keck HIRES Observations of BALQSO 1603+3002. ApJ 524:566–571. doi: 10.1086/307841. arXiv:astro-ph/9903140 ADSCrossRefGoogle Scholar
  2. Arav N, Korista KT, de Kool M, Junkkarinen VT, Begelman MC (1999b) Hubble Space Telescope Observations of the Broad Absorption Line QuasarPG 0946+301. ApJ 516:27–46. doi: 10.1086/307073. arXiv:astro-ph/9810309 ADSCrossRefGoogle Scholar
  3. Dai X, Shankar F, Sivakoff GR (2012) The Intrinsic Fractions and Radio Properties of Low-ionization Broad Absorption Line Quasars. ApJ 757:180. doi: 10.1088/0004-637X/757/2/180. arXiv:1004.0700 ADSCrossRefGoogle Scholar
  4. de Kool M, Begelman MC (1995) Radiation Pressure-driven Magnetic Disk Winds in Broad Absorption Line Quasi-stellar Objects. ApJ 455:448. doi: 10.1086/176594 ADSCrossRefGoogle Scholar
  5. Edelson R, Gelbord JM, Horne K, McHardy IM, Peterson BM, Arévalo P, Breeveld AA, De Rosa G, Evans PA, Goad MR, Kriss GA, Brandt WN, Gehrels N, Grupe D, Kennea JA, Kochanek CS, Nousek JA, Papadakis I, Siegel M, Starkey D, Uttley P, Vaughan S, Young S, Barth AJ, Bentz MC, Brewer BJ, Crenshaw DM, Dalla Bontà E, De Lorenzo-Cáceres A, Denney KD, Dietrich M, Ely J, Fausnaugh MM, Grier CJ, Hall PB, Kaastra J, Kelly BC, Korista KT, Lira P, Mathur S, Netzer H, Pancoast A, Pei L, Pogge RW, Schimoia JS, Treu T, Vestergaard M, Villforth C, Yan H, Zu Y (2015) Space Telescope and Optical Reverberation Mapping Project. II. Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548. ApJ 806:129. doi: 10.1088/0004-637X/806/1/129. arXiv:1501.05951
  6. Elvis M (2000) A Structure for Quasars. ApJ 545:63–76. doi: 10.1086/317778. arXiv:astro-ph/0008064 Google Scholar
  7. Gaetz TJ, Salpeter EE (1983) Line radiation from a hot, optically thin plasma - Collision strengths and emissivities. ApJs 52:155–168. doi: 10.1086/190862 ADSCrossRefGoogle Scholar
  8. Hamann WR, Oskinova LM, Feldmeier A (2008) Spectrum formation in clumpy stellar winds. In: Hamann WR, Feldmeier A, Oskinova LM (eds) Clumping in Hot-Star Winds, p 75Google Scholar
  9. Horne K, Marsh TR, Cheng FH, Hubeny I, Lanz T (1994) HST eclipse mapping of dwarf nova OY Carinae in quiescence: an ’Fe II curtain’ with Mach approx. = 6 velocity dispersion veils the white dwarf. ApJ 426:294–307. doi: 10.1086/174064 ADSCrossRefGoogle Scholar
  10. Lucy LB (2002) Monte Carlo transition probabilities. A&A384:725–735. doi: 10.1051/0004-6361:20011756. arXiv:astro-ph/0107377
  11. Lucy LB (2003) Monte Carlo transition probabilities. II. A&A403:261–275. doi: 10.1051/0004-6361:20030357. arXiv:astro-ph/0303202
  12. Marsh TR, Horne K (1988) Images of accretion discs. II - Doppler tomography. MNRAS 235:269–286. doi: 10.1093/mnras/235.1.269 Google Scholar
  13. Muñoz-Darias T, Casares J, Mata Sánchez D, Fender RP, Armas Padilla M, Linares M, Ponti G, Charles PA, Mooley KP, Rodriguez J (2016) Regulation of black-hole accretion by a disk wind during a violent outburst of V404 Cygni. Nature. doi: 10.1038/nature17446. arXiv:astro-ph/0312379
  14. Netzer H (1990) AGN emission lines. In: Blandford RD, Netzer H, Woltjer L, Courvoisier TJL, Mayor M (eds) Active Galactic Nuclei, pp 57–160Google Scholar
  15. Noebauer UM, Long KS, Sim SA, Knigge C (2010) The Geometry and Ionization Structure of the Wind in the Eclipsing Nova-like Variables RW Tri and UX UMa. ApJ 719:1932–1945. doi: 10.1088/0004-637X/719/2/1932. arXiv:1007.0209 ADSCrossRefGoogle Scholar
  16. Risaliti G, Salvati M, Marconi A (2011) [O III] equivalent width and orientation effects in quasars. MNRAS 411:2223–2229. doi: 10.1111/j.1365-2966.2010.17843.x. arXiv:1010.2037 ADSCrossRefGoogle Scholar
  17. Shen Y, Ho LC (2014) The diversity of quasars unified by accretion and orientation. Nature 513:210–213. doi: 10.1038/nature13712. arXiv:1409.2887 ADSCrossRefGoogle Scholar
  18. Stalevski M, Fritz J, Baes M, Popovic LC (2013) The AGN dusty torus as a clumpy two-phase medium: radiative transfer modeling with SKIRT. ArXiv e-prints arXiv:1301.4244
  19. Šurlan B, Hamann WR, Kubát J, Oskinova LM, Feldmeier A (2012) Three-dimensional radiative transfer in clumped hot star winds. I. Influence of clumping on the resonance line formation. A&A 541:A37. doi: 10.1051/0004-6361/201118590. arXiv:1202.4787
  20. Urrutia T, Becker RH, White RL, Glikman E, Lacy M, Hodge J, Gregg MD (2009) The FIRST-2MASS Red Quasar Survey. II. An Anomalously High Fraction of LoBALs in Searches for Dust-Reddened Quasars. ApJ 698:1095–1109. doi: 10.1088/0004-637X/698/2/1095. arXiv:0808.3668 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations