Disc Winds Matter pp 169-196 | Cite as
Quasar Emission Lines as Probes of Orientation and Unification
Chapter
First Online:
- 231 Downloads
Abstract
In the previous chapter, I presented tests of geometric unification models using MCRT and photoionization simulations.
Keywords
BAL QSOs Sloan Digital Sky Survey (SDSS) Outflow Geometry Risaliti Intrinsic Distribution
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- Agol E (1997) The Effects of Magnetic Fields, Absorption, and Relativity on the Polarization of Accretion Disks around Supermassive Black Holes. PhD thesis, UNIVERSITY OF CALIFORNIA, SANTA BARBARAGoogle Scholar
- Allen JT, Hewett PC, Maddox N, Richards GT, Belokurov V (2011) A strong redshift dependence of the broad absorption line quasar fraction. MNRAS 410:860–884. doi: 10.1111/j.1365-2966.2010.17489.x. arXiv:1007.3991 ADSCrossRefGoogle Scholar
- Baskin A, Laor A (2005) What controls the [OIII]\(\lambda \)5007 line strength in active galactic nuclei? MNRAS 358:1043–1054. doi: 10.1111/j.1365-2966.2005.08841.x. arXiv:astro-ph/0501436 ADSCrossRefGoogle Scholar
- Borguet BCJ, Edmonds D, Arav N, Dunn J, Kriss GA (2012) A 10 kpc Scale Seyfert Galaxy Outflow: HST/COS Observations of IRAS F22456–5125. ApJ 751:107. doi: 10.1088/0004-637X/751/2/107. arXiv:1205.0189 ADSCrossRefGoogle Scholar
- Borguet B, Hutsemékers D (2010) A polar+equatorial wind model for broad absorption line quasars. I. Fitting the C IV BAL profiles. A&A 515:A22. doi: 10.1051/0004-6361/200913255. arXiv:1003.2386
- Boroson TA, Green RF (1992) The emission-line properties of low-redshift quasi-stellar objects. ApJs 80:109–135. doi: 10.1086/191661 ADSCrossRefGoogle Scholar
- Boroson TA, Meyers KA (1992) The optical properties of IR-selected and MG II broad absorption line quasars. ApJ 397:442–451. doi: 10.1086/171800 ADSCrossRefGoogle Scholar
- Brotherton MS, De Breuck C, Schaefer JJ (2006) Spectropolarimetry of PKS 0040–005 and the orientation of broad absorption line quasars. MNRAS 372:L58–L62. doi: 10.1111/j.1745-3933.2006.00226.x. arXiv:astro-ph/0608014
- Caccianiga A, Severgnini P (2011) The relationship between [O III]\(\lambda \)5007 Å equivalent width and obscuration in active galactic nuclei. MNRAS 415:1928–1934. doi: 10.1111/j.1365-2966.2011.18838.x. arXiv:1104.1348 ADSCrossRefGoogle Scholar
- Capellupo DM, Netzer H, Lira P, Trakhtenbrot B, Mejía-Restrepo J (2015) Active galactic nuclei at z = 1.5 - I. Spectral energy distribution and accretion discs. MNRAS 446:3427–3446. doi: 10.1093/mnras/stu2266. arXiv:1410.8137 ADSCrossRefGoogle Scholar
- Cohen MH, Ogle PM, Tran HD, Vermeulen RC, Miller JS, Goodrich RW, Martel AR (1995) Spectropolarimetry of Two Broad Absorption Line Quasars with the W. M. Keck Telescope. ApJ Letters 448:L77. doi: 10.1086/309602 ADSGoogle Scholar
- Dai X, Shankar F, Sivakoff GR (2012) The Intrinsic Fractions and Radio Properties of Low-ionization Broad Absorption Line Quasars. ApJ 757:180. doi: 10.1088/0004-637X/757/2/180. arXiv:1004.0700 ADSCrossRefGoogle Scholar
- Davis SW, Hubeny I (2006) A Grid of Relativistic, Non-LTE Accretion Disk Models for Spectral Fitting of Black Hole Binaries. ApJs 164:530–535. doi: 10.1086/503549. arXiv:astro-ph/0602499 ADSCrossRefGoogle Scholar
- Davis SW, Woo JH, Blaes OM (2007) The UV Continuum of Quasars: Models and SDSS Spectral Slopes. ApJ 668:682–698. doi: 10.1086/521393. arXiv:0707.1456 ADSCrossRefGoogle Scholar
- DiPompeo MA, Brotherton MS, De Breuck C (2012b) The Viewing Angles of Broad Absorption Line versus Unabsorbed Quasars. ApJ 752:6. doi: 10.1088/0004-637X/752/1/6. arXiv:1204.1375 ADSCrossRefGoogle Scholar
- Echevarria J (1988) A statistical analysis of the emission line ratios in cataclysmic variables. MNRAS 233:513–527. doi: 10.1093/mnras/233.3.513 ADSCrossRefGoogle Scholar
- Eracleous M, Halpern JP (1994) Doubled-peaked emission lines in active galactic nuclei. ApJs 90:1–30. doi: 10.1086/191856 ADSCrossRefGoogle Scholar
- Eracleous M, Halpern JP (2003) Completion of a Survey and Detailed Study of Double-peaked Emission Lines in Radio-loud Active Galactic Nuclei. ApJ 599:886–908. doi: 10.1086/379540. arXiv:astro-ph/0309149 ADSCrossRefGoogle Scholar
- Flohic HMLG, Eracleous M, Bogdanović T (2012) Effects of an Accretion Disk Wind on the Profile of the Balmer Emission Lines from Active Galactic Nuclei. ApJ 753:133. doi: 10.1088/0004-637X/753/2/133 ADSCrossRefGoogle Scholar
- Gallagher SC, Brandt WN, Sambruna RM, Mathur S, Yamasaki N (1999) Exploratory ASCA Observations of Broad Absorption Line Quasi-stellar Objects. ApJ 519:549–555. doi: 10.1086/307405. arXiv:astro-ph/9902045 ADSCrossRefGoogle Scholar
- Goodrich RW, Miller JS (1995) Polarization Clues to the Structure of Broad Absorption Line Quasi-stellar Objects. ApJ Letters 448:L73. doi: 10.1086/309600 ADSCrossRefGoogle Scholar
- Green PJ, Mathur S (1996) Broad Absorption Line Quasars Observed by the ROSAT PSPC. ApJ 462:637. doi: 10.1086/177178. arXiv:astro-ph/9512032 ADSCrossRefGoogle Scholar
- Green PJ, Aldcroft TL, Mathur S, Wilkes BJ, Elvis M (2001) A Chandra Survey of Broad Absorption Line Quasars. ApJ 558:109–118. doi: 10.1086/322311. arXiv:astro-ph/0105258 ADSCrossRefGoogle Scholar
- Grupe D, Mathur S, Elvis M (2003b) XMM-Newton Observations of Two Broad Absorption Line QSOs: Q1246-057 and SBS 1542+541. AJ 126:1159–1166. doi: 10.1086/377141. arXiv:astro-ph/0305309
- Hessman FV, Robinson EL, Nather RE, Zhang EH (1984) Time-resolved spectroscopy of SS Cygni at minimum and maximum light. ApJ 286:747–759. doi: 10.1086/162651 ADSCrossRefGoogle Scholar
- Higginbottom N, Knigge C, Long KS, Sim SA, Matthews JH (2013) A simple disc wind model for broad absorption line quasars. MNRAS 436:1390–1407. doi: 10.1093/mnras/stt1658. arXiv:1308.5973 ADSCrossRefGoogle Scholar
- Horne K, Marsh TR (1986) Emission line formation in accretion discs. MNRAS 218:761–773ADSCrossRefGoogle Scholar
- Hubeny I, Agol E, Blaes O, Krolik JH (2000) Non-LTE Models and Theoretical Spectra of Accretion Disks in Active Galactic Nuclei. III. Integrated Spectra for Hydrogen-Helium Disks. ApJ 533:710–728. doi: 10.1086/308708. arXiv:astro-ph/9911317 Google Scholar
- Knigge C, Scaringi S, Goad MR, Cottis CE (2008) The intrinsic fraction of broad-absorption line quasars. MNRAS 386:1426–1435. doi: 10.1111/j.1365-2966.2008.13081.x. arXiv:0802.3697 ADSCrossRefGoogle Scholar
- Kraemer SB, Schmitt HR, Crenshaw DM, Meléndez M, Turner TJ, Guainazzi M, Mushotzky RF (2011) Multi-wavelength Probes of Obscuration Toward the Narrow-line Region in Seyfert Galaxies. ApJ 727:130. doi: 10.1088/0004-637X/727/2/130. arXiv:1011.5993 ADSCrossRefGoogle Scholar
- Krolik JH, Voit GM (1998) What Is the True Covering Factor of Absorbing Matter in BALQSOs? ApJ Letters 497:L5–L8. doi: 10.1086/311274. arXiv:astro-ph/9802082 ADSCrossRefGoogle Scholar
- Lamy H, Hutsemékers D (2004) Polarization properties of broad absorption line QSOs: New statistical clues. A&A 427:107–123. doi: 10.1051/0004-6361:20041066. arXiv:astro-ph/0408476 ADSCrossRefGoogle Scholar
- Lazarova MS, Canalizo G, Lacy M, Sajina A (2012) The Nature of LoBAL QSOs. I. SEDs and Mid-infrared Spectral Properties. ApJ 755:29. doi: 10.1088/0004-637X/755/1/29. arXiv:1206.1827
- Maiolino R, Marconi A, Oliva E (2001a) Dust in active nuclei. II. Powder or gravel? A&A 365:37–48. doi: 10.1051/0004-6361:20000012. arXiv:astro-ph/0010066 ADSCrossRefGoogle Scholar
- Maiolino R, Marconi A, Salvati M, Risaliti G, Severgnini P, Oliva E, La Franca F, Vanzi L (2001b) Dust in active nuclei. I. Evidence for "anomalous" properties. A&A 365:28–36. doi: 10.1051/0004-6361:20000177. arXiv:astro-ph/0010009 ADSCrossRefGoogle Scholar
- Marin F (2016) Are there reliable methods to estimate the nuclear orientation of Seyfert galaxies? ArXiv e-prints arXiv:1605.02904
- Marin F (2014) A compendium of AGN inclinations with corresponding UV/optical continuum polarization measurements. MNRAS 441:551–564. doi: 10.1093/mnras/stu593. arXiv:1404.2417 ADSCrossRefGoogle Scholar
- Marin F, Goosmann RW (2013) A structure for quasars under the scope of polarization - I. The UV/optical polarization dichotomy of type-1 and type-2 AGN. MNRAS 436:2522–2534. doi: 10.1093/mnras/stt1757 ADSCrossRefGoogle Scholar
- Marziani P, Sulentic JW, Zwitter T, Dultzin-Hacyan D, Calvani M (2001) Searching for the Physical Drivers of the Eigenvector 1 Correlation Space. ApJ 558:553–560. doi: 10.1086/322286. arXiv:astro-ph/0105343 ADSCrossRefGoogle Scholar
- Mathur S, Green PJ, Arav N, Brotherton M, Crenshaw M, deKool M, Elvis M, Goodrich RW, Hamann F, Hines DC, Kashyap V, Korista K, Peterson BM, Shields JC, Shlosman I, van Breugel W, Voit M (2000) Thomson Thick X-Ray Absorption in a Broad Absorption Line Quasar, PG 0946+301. ApJ Letters 533:L79–L82. doi: 10.1086/312617. arXiv:astro-ph/0002054 ADSCrossRefGoogle Scholar
- Mihalas D (1978) Stellar atmospheres /2nd edition/Google Scholar
- Morabito LK, Dai X, Leighly KM, Sivakoff GR, Shankar F (2013) Unveiling the Intrinsic X-ray Properties of Broad Absorption Line Quasars with a Relatively Unbiased Sample. ArXiv e-prints arXiv:1309.5978
- Morabito LK, Dai X, Leighly KM, Sivakoff GR, Shankar F (2011) Suzaku Observations of Three FeLoBAL Quasi-stellar Objects: SDSS J0943+5417, J1352+4239, and J1723+5553. ApJ 737:46. doi: 10.1088/0004-637X/737/1/46. arXiv:1011.4327 ADSCrossRefGoogle Scholar
- Muñoz-Darias T, Coriat M, Plant DS, Ponti G, Fender RP, Dunn RJH (2013) Inclination and relativistic effects in the outburst evolution of black hole transients. MNRAS 432:1330–1337. doi: 10.1093/mnras/stt546. arXiv:1304.2072 ADSCrossRefGoogle Scholar
- Murray N, Chiang J (1996) Wind-dominated optical line emission from accretion disks around luminous cataclysmic variable stars. Nature 382:789–791. doi: 10.1038/382789a0 ADSCrossRefGoogle Scholar
- Murray N, Chiang J (1997) Disk Winds and Disk Emission Lines. ApJ 474:91–103ADSCrossRefGoogle Scholar
- Murray N, Chiang J, Grossman SA, Voit GM (1995) Accretion Disk Winds from Active Galactic Nuclei. ApJ 451:498. doi: 10.1086/176238 ADSCrossRefGoogle Scholar
- Noebauer UM, Long KS, Sim SA, Knigge C (2010) The Geometry and Ionization Structure of the Wind in the Eclipsing Nova-like Variables RW Tri and UX UMa. ApJ 719:1932–1945. doi: 10.1088/0004-637X/719/2/1932. arXiv:1007.0209 ADSCrossRefGoogle Scholar
- Nomura M, Ohsuga K, Wada K, Susa H, Misawa T (2013) Modeling Line-Driven Disk Wind for Broad Absorption Lines of Quasars. PASJ 65:40. doi: 10.1093/pasj/65.2.40. arXiv:1212.3075 ADSGoogle Scholar
- Nomura M, Ohsuga K, Takahashi HR, Wada K, Yoshida T (2016) Radiation hydrodynamic simulations of line-driven disk winds for ultra-fast outflows. PASJ 68:16. doi: 10.1093/pasj/psv124. arXiv:1511.08815
- Patterson J (1984) The evolution of cataclysmic and low-mass X-ray binaries. ApJs 54:443–493. doi: 10.1086/190940 ADSCrossRefGoogle Scholar
- Proga D (2005) Theory of Outflows in Cataclysmic Variables. In: Hameury JM, Lasota JP (eds) The Astrophysics of Cataclysmic Variables and Related Objects, Astronomical Society of the Pacific Conference Series, vol 330, p 103, arXiv:astro-ph/0411200
- Proga D, Kallman TR (2004) Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation. ApJ 616:688–695. doi: 10.1086/425117. arXiv:astro-ph/0408293 Google Scholar
- Proga D, Stone JM, Kallman TR (2000) Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. ApJ 543:686–696. doi: 10.1086/317154. arXiv:astro-ph/0005315 ADSCrossRefGoogle Scholar
- Risaliti G, Elvis M (2010) A non-hydrodynamical model for acceleration of line-driven winds in active galactic nuclei. A&A 516:A89. doi: 10.1051/0004-6361/200912579. arXiv:0911.0958 ADSCrossRefGoogle Scholar
- Risaliti G, Salvati M, Marconi A (2011) [O III] equivalent width and orientation effects in quasars. MNRAS 411:2223–2229. doi: 10.1111/j.1365-2966.2010.17843.x. arXiv:1010.2037 ADSCrossRefGoogle Scholar
- Schmidt GD, Hines DC (1999) The Polarization of Broad Absorption Line QSOS. ApJ 512:125–135. doi: 10.1086/306770 ADSCrossRefGoogle Scholar
- Shen Y, Ho LC (2014) The diversity of quasars unified by accretion and orientation. Nature 513:210–213. doi: 10.1038/nature13712. arXiv:1409.2887 ADSCrossRefGoogle Scholar
- Shen Y, Richards GT, Strauss MA, Hall PB, Schneider DP, Snedden S, Bizyaev D, Brewington H, Malanushenko V, Malanushenko E, Oravetz D, Pan K, Simmons A (2011) A Catalog of Quasar Properties from Sloan Digital Sky Survey Data Release 7. ApJs 194:45. doi: 10.1088/0067-0049/194/2/45. arXiv:1006.5178 ADSCrossRefGoogle Scholar
- Strateva IV, Strauss MA, Hao L, Schlegel DJ, Hall PB, Gunn JE, Li LX, Ivezić Ž, Richards GT, Zakamska NL, Voges W, Anderson SF, Lupton RH, Schneider DP, Brinkmann J, Nichol RC (2003) Double-peaked Low-Ionization Emission Lines in Active Galactic Nuclei. AJ 126:1720–1749. doi: 10.1086/378367. arXiv:astro-ph/0307357
- Sulentic JW, Zwitter T, Marziani P, Dultzin-Hacyan D (2000) Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei. ApJ Letters 536:L5–L9. doi: 10.1086/312717. arXiv:astro-ph/0005177 ADSCrossRefGoogle Scholar
- Urrutia T, Becker RH, White RL, Glikman E, Lacy M, Hodge J, Gregg MD (2009) The FIRST-2MASS Red Quasar Survey. II. An Anomalously High Fraction of LoBALs in Searches for Dust-Reddened Quasars. ApJ 698:1095–1109. doi: 10.1088/0004-637X/698/2/1095. arXiv:0808.3668 ADSCrossRefGoogle Scholar
- Vestergaard M, Wilkes BJ (2001) An Empirical Ultraviolet Template for Iron Emission in Quasars as Derived from I Zwicky 1. ApJs 134:1–33. doi: 10.1086/320357. arXiv:astro-ph/0104320 ADSCrossRefGoogle Scholar
- Weymann RJ, Morris SL, Foltz CB, Hewett PC (1991) Comparisons of the emission-line and continuum properties of broad absorption line and normal quasi-stellar objects. ApJ 373:23–53. doi: 10.1086/170020 ADSCrossRefGoogle Scholar
- Zhang SN, Cui W, Chen W (1997) Black Hole Spin in X-Ray Binaries: Observational Consequences. ApJ Letters 482:L155–L158. doi: 10.1086/310705. arXiv:astro-ph/9704072 ADSCrossRefGoogle Scholar
- Zhou H, Wang T, Wang H, Wang J, Yuan W, Lu Y (2006) Polar Outflows in Six Broad Absorption Line Quasars. ApJ 639:716–723. doi: 10.1086/499768. arXiv:astro-ph/0510243 ADSCrossRefGoogle Scholar
Copyright information
© Springer International Publishing AG 2017