Advertisement

The Impact of Accretion Disc Winds on the Optical Spectra of Cataclysmic Variables

  • James MatthewsEmail author
Chapter
  • 227 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Here, I present Monte Carlo radiative transfer simulations designed to assess the likely impact of accretion disc winds on the optical spectra of high-state CVs.

References

  1. Baptista R, Silveira C, Steiner JE, Horne K (2000) Spatially resolved spectra of the accretion disc of the nova-like variable UU Aquarii. MNRAS 314:713–726. doi: 10.1046/j.1365-8711.2000.03325.x. arXiv:astro-ph/0002189 ADSCrossRefGoogle Scholar
  2. Beuermann K, Thomas HC (1990) Detection of emission lines from the secondary star in IX Velorum (=CPD-48 deg 1577). A&A 230:326–338ADSGoogle Scholar
  3. Ferland GJ (2005) Hazy, A Brief Introduction to Cloudy 05.07Google Scholar
  4. Frank J, King AR (1981) A standard accretion disc model for RW Tri. MNRAS 195:227–234ADSCrossRefGoogle Scholar
  5. Groot PJ, Rutten RGM, van Paradijs J (2004) A spectrophotometric study of RW Trianguli. A&A 417:283–291. doi: 10.1051/0004-6361:20031771. arXiv:astro-ph/0401029 ADSCrossRefGoogle Scholar
  6. Harrop-Allin MK, Warner B (1996) Accretion disc radii in eclipsing cataclysmic variables. MNRAS 279:219–228ADSCrossRefGoogle Scholar
  7. Hartley LE, Murray JR, Drew JE, Long KS (2005) Spiral waves and the secondary star in the nova-like variable V3885 Sgr. MNRAS 363:285–292. doi: 10.1111/j.1365-2966.2005.09447.x. arXiv:astro-ph/0507495 ADSCrossRefGoogle Scholar
  8. Hassall BJM (1985) A superoutburst of the dwarf nova EK Trianguli Australis. MNRAS 216:335–352ADSCrossRefGoogle Scholar
  9. Hoare MG, Drew JE (1991) Boundary-layer temperatures in high accretion rate cataclysmic variables. MNRAS 249:452–459ADSCrossRefGoogle Scholar
  10. Hoare MG, Drew JE (1993) The ionization state of the winds from cataclysmic variables without classical boundary layers. MNRAS 260:647–662ADSCrossRefGoogle Scholar
  11. Hubeny I, Lanz T (1995) Non-LTE line-blanketed model atmospheres of hot stars. 1: Hybrid complete linearization/accelerated lambda iteration method. ApJ 439:875–904. doi: 10.1086/175226 ADSCrossRefGoogle Scholar
  12. Knigge C (2006) The donor stars of cataclysmic variables. MNRAS 373:484–502. doi: 10.1111/j.1365-2966.2006.11096.x. arXiv:astro-ph/0609671 ADSCrossRefGoogle Scholar
  13. Knigge C, Long KS, Wade RA, Baptista R, Horne K, Hubeny I, Rutten RGM (1998b) Hubble Space Telescope Eclipse Observations of the Nova-like Cataclysmic Variable UX Ursae Majoris. ApJ 499:414. doi: 10.1086/305617. arXiv:astro-ph/9801206 ADSCrossRefGoogle Scholar
  14. Kurucz RL (1991) New Opacity Calculations. In: Crivellari L, Hubeny I, Hummer DG (eds) NATO ASIC Proc. 341: Stellar Atmospheres - Beyond Classical Models, p 441Google Scholar
  15. La Dous C (1989a) On the Balmer jump in dwarf novae during the outburst. MNRAS 238:935–943ADSCrossRefGoogle Scholar
  16. La Dous C (1989b) Synthetic optical and ultraviolet spectra of stationary accretion disks. A&A 211:131–155ADSGoogle Scholar
  17. Long KS, Blair WP, Davidsen AF, Bowers CW, Dixon WVD, Durrance ST, Feldman PD, Henry RC, Kriss GA, Kruk JW, Moos HW, Vancura O, Ferguson HC, Kimble RA (1991) Spectroscopy of Z Camelopardalis in outburst with the Hopkins Ultraviolet Telescope. ApJ Letters 381:L25–L29. doi: 10.1086/186188 ADSCrossRefGoogle Scholar
  18. Long KS, Wade RA, Blair WP, Davidsen AF, Hubeny I (1994) Observations of the bright novalike variable IX Velorum with the Hopkins Ultraviolet Telescope. ApJ 426:704–715. doi: 10.1086/174107 ADSCrossRefGoogle Scholar
  19. Longmore AJ, Lee TJ, Allen DA, Adams DJ (1981) Infrared observations of the cataclysmic variable RW Tri. MNRAS 195:825–830ADSCrossRefGoogle Scholar
  20. MacGregor KB, Hartmann L, Raymond JC (1979) Radiative amplification of sound waves in the winds of O and B stars. ApJ 231:514–523. doi: 10.1086/157213 ADSCrossRefGoogle Scholar
  21. Miller-Jones JCA, Sivakoff GR, Knigge C, Körding EG, Templeton M, Waagen EO (2013) An Accurate Geometric Distance to the Compact Binary SS Cygni Vindicates Accretion Disc Theory. Science 340:950–952. doi: 10.1126/science.1237145. arXiv:1305.5846 ADSCrossRefGoogle Scholar
  22. Mizusawa T, Merritt J, Ballouz RL, Bonaro M, Foran S, Plumberg C, Stewart H, Wiley T, Sion EM (2010) Far Ultraviolet Spectroscopy of Seven Nova-Like Variables. PASP 122:299–308. doi: 10.1086/651436. arXiv:1007.3319 ADSCrossRefGoogle Scholar
  23. Murray N, Chiang J (1996) Wind-dominated optical line emission from accretion disks around luminous cataclysmic variable stars. Nature 382:789–791. doi: 10.1038/382789a0 ADSCrossRefGoogle Scholar
  24. Murray N, Chiang J (1997) Disk Winds and Disk Emission Lines. ApJ 474:91–103ADSCrossRefGoogle Scholar
  25. Neustroev VV, Suleimanov VF, Borisov NV, Belyakov KV, Shearer A (2011) Dark spot, spiral waves and the SW Sextantis behaviour: it is all about UX Ursae Majoris. MNRAS 410:963–977. doi: 10.1111/j.1365-2966.2010.17495.x. arXiv:1006.3106 ADSCrossRefGoogle Scholar
  26. Noebauer UM, Long KS, Sim SA, Knigge C (2010) The Geometry and Ionization Structure of the Wind in the Eclipsing Nova-like Variables RW Tri and UX UMa. ApJ 719:1932–1945. doi: 10.1088/0004-637X/719/2/1932. arXiv:1007.0209 ADSCrossRefGoogle Scholar
  27. Owocki SP, Rybicki GB (1984) Instabilities in line-driven stellar winds. I - Dependence on perturbation wavelength. ApJ 284:337–350. doi: 10.1086/162412 ADSCrossRefGoogle Scholar
  28. Owocki SP, Rybicki GB (1985) Instabilities in line-driven stellar winds. II - Effect of scattering. ApJ 299:265–276. doi: 10.1086/163697 Google Scholar
  29. Patterson J, Patino R, Thorstensen JR, Harvey D, Skillman DR, Ringwald FA (1996) Periods and Quasiperiods in the Cataclysmic Variable BZ Camelopardalis. AJ 111:2422. doi: 10.1086/117976
  30. Prinja RK, Ringwald FA, Wade RA, Knigge C (2000) HST ultraviolet observations of rapid variability in the accretion-disc wind of BZ Cam. MNRAS 312:316–326. doi: 10.1046/j.1365-8711.2000.03111.x ADSCrossRefGoogle Scholar
  31. Proga D, Stone JM, Drew JE (1998) Radiation-driven winds from luminous accretion discs. MNRAS 295:595. doi: 10.1046/j.1365-8711.1998.01337.x. arXiv:astro-ph/9710305 ADSCrossRefGoogle Scholar
  32. Proga D, Kallman TR, Drew JE, Hartley LE (2002b) Resonance Line Profile Calculations Based on Hydrodynamical Models of Cataclysmic Variable Winds. ApJ 572:382–391. doi: 10.1086/340339. arXiv:astro-ph/0202384 ADSCrossRefGoogle Scholar
  33. Ringwald FA, Naylor T (1998) High-speed optical spectroscopy of a cataclysmic variable wind - BZ Camelopardalis. AJ 115:286. doi: 10.1086/300192. arXiv:astro-ph/9710021
  34. Rutten RGM, van Paradijs J, Tinbergen J (1992) Reconstruction of the accretion disk in six cataclysmic variable stars. A&A 260:213–226ADSGoogle Scholar
  35. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. A&A 24:337–355Google Scholar
  36. Smak J (1995) Eclipses in Cataclysmic Variables with Stationary Accretion Disks. V. RW Tri. ACTAA 45:259–277Google Scholar
  37. van Regemorter H (1962) Rate of Collisional Excitation in Stellar Atmospheres. ApJ 136:906. doi: 10.1086/147445 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations