Disc Winds Matter pp 77-120 | Cite as
Monte Carlo Radiative Transfer and Ionization
Chapter
First Online:
- 247 Downloads
Abstract
In the previous chapters I have given an introduction to the field and some relevant background relating to accretion discs and their associated outflows.
Keywords
Carlo Radiative Transfer Monte Carlo Radiative Transfer (MCRT) Ionization Cycles Sobolev Optical Depth Radiation Packet
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
- Abbott DC, Lucy LB (1985) Multiline transfer and the dynamics of stellar winds. ApJ 288:679–693. doi: 10.1086/162834 ADSCrossRefGoogle Scholar
- Badnell NR (2006) Radiative Recombination Data for Modeling Dynamic Finite-Density Plasmas. ApJs 167:334–342. doi: 10.1086/508465. arXiv:astro-ph/0604144 ADSCrossRefGoogle Scholar
- Cunto W, Mendoza C, Ochsenbein F (1993) Zeippen CJ 275:L5Google Scholar
- Dere KP, Landi E, Mason HE, Monsignori Fossi BC, Young PR (1997) CHIANTI - an atomic database for emission lines. A&As 125:149–173. doi: 10.1051/aas:1997368 ADSCrossRefGoogle Scholar
- Ferland G (2002) Reliability in the Face of Complexity. The Challenge of High-End Scientific Computing, ArXiv Astrophysics e-prints arXiv:astro-ph/0210161 Google Scholar
- Ferland GJ, Porter RL, van Hoof PAM, Williams RJR, Abel NP, Lykins ML, Shaw G, Henney WJ, Stancil PC (2013) The 2013 Release of Cloudy. RMXAA 49:137–163 arXiv:1302.4485 ADSGoogle Scholar
- Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL, Woodall TS (2004) Open MPI: Goals, concept, and design of a next generation MPI implementation. Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp 97–104Google Scholar
- Gayet R (1970) On the Average Gaunt Factor for Free-Free Emission. A&A 9:312ADSGoogle Scholar
- Gough B (2009) GNU Scientific Library Reference Manual - Third Edition, 3rd edn. Network Theory LtdGoogle Scholar
- Higginbottom N, Knigge C, Long KS, Sim SA, Matthews JH (2013) A simple disc wind model for broad absorption line quasars. MNRAS 436:1390–1407. doi: 10.1093/mnras/stt1658. arXiv:1308.5973 ADSCrossRefGoogle Scholar
- Higginbottom N, Proga D, Knigge C, Long KS, Matthews JH, Sim SA (2014) Line-driven Disk Winds in Active Galactic Nuclei: The Critical Importance of Ionization and Radiative Transfer. ApJ 789:19. doi: 10.1088/0004-637X/789/1/19. arXiv:1402.1849 ADSCrossRefGoogle Scholar
- Hubeny I (2001) From Escape Probabilities to Exact Radiative Transfer. In: Ferland G, Savin DW (eds) Spectroscopic Challenges of Photoionized Plasmas, Astronomical Society of the Pacific Conference Series, vol 247, p 197Google Scholar
- Humphrey A, Binette L (2014) Extreme C II emission in type 2 quasars at z\(\sim \) 2.5: a signature of \(\kappa \)-distributed electron energies? MNRAS 442:753–758. doi: 10.1093/mnras/stu723. arXiv:1404.6434 ADSCrossRefGoogle Scholar
- Kerzendorf WE, Sim SA (2014) A spectral synthesis code for rapid modelling of supernovae. MNRAS 440:387–404. doi: 10.1093/mnras/stu055. arXiv:1401.5469 ADSCrossRefGoogle Scholar
- Klein O, Nishina T (1929) Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z Phys 52:853–868. doi: 10.1007/BF01366453
- Kromer M, Sim SA (2009) Time-dependent three-dimensional spectrum synthesis for Type Ia supernovae. MNRAS 398:1809–1826. doi: 10.1111/j.1365-2966.2009.15256.x. arXiv:0906.3152 ADSCrossRefGoogle Scholar
- Kurucz RL, Bell B (1995) Atomic line listGoogle Scholar
- Landi E, Del Zanna G, Young PR, Dere KP, Mason HE (2012) CHIANTI–An Atomic Database for Emission Lines. XII. Version 7 of the Database. ApJ 744:99. doi: 10.1088/0004-637X/744/2/99
- Long KS, Knigge C (2002) Modeling the Spectral Signatures of Accretion Disk Winds: A New Monte Carlo Approach. ApJ 579:725–740. doi: 10.1086/342879. arXiv:astro-ph/0208011 ADSCrossRefGoogle Scholar
- Lucy LB (2002) 384:725–735. doi: 10.1051/0004-6361:20011756. arXiv:astro-ph/0107377
- Lucy LB (2003) 403:261–275. doi: 10.1051/0004-6361:20030357. arXiv:astro-ph/0303202
- Lucy LB (1999a) Computing radiative equilibria with Monte Carlo techniques. A&A 344:282–288ADSGoogle Scholar
- Lucy LB (1999b) Improved Monte Carlo techniques for the spectral synthesis of supernovae. A&A 345:211–220ADSGoogle Scholar
- Mazzali PA, Lucy LB (1993) The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. A&A 279:447–456ADSGoogle Scholar
- Menzel DH, Pekeris CL (1935) Absorption coefficients and hydrogen line intensities. MNRAS 96:77. doi: 10.1093/mnras/96.1.77 ADSzbMATHGoogle Scholar
- Mihalas D (1978) Stellar atmospheres /2nd edition/Google Scholar
- Osterbrock DE (1989) Astrophysics of gaseous nebulae and active galactic nucleiGoogle Scholar
- Rybicki G (1970) Theoretical Methods of Treating Line Formation Problems in Steady-State Extended Atmospheres (introductory Paper). In: Groth HG, Wellmann P (eds) IAU Colloq. 2: Spectrum Formation in Stars with Steady-State Extended Atmospheres, p 87Google Scholar
- Rybicki GB, Hummer DG (1978) A generalization of the Sobolev method for flows with nonlocal radiative coupling. ApJ 219:654–675. doi: 10.1086/155826 ADSMathSciNetCrossRefGoogle Scholar
- Seaton MJ (1959) The solution of capture-cascade equations for hydrogen. MNRAS 119:90ADSCrossRefGoogle Scholar
- Sim SA (2004) Mass-loss rates for hot luminous stars: the influence of line branching. MNRAS 349:899–908. doi: 10.1111/j.1365-2966.2004.07562.x. arXiv:astro-ph/0401149 ADSCrossRefGoogle Scholar
- Sim SA, Drew JE, Long KS (2005) Two-dimensional Monte Carlo simulations of HI line formation in massive young stellar object disc winds. MNRAS 363:615–627. doi: 10.1111/j.1365-2966.2005.09472.x. arXiv:astro-ph/0508103 ADSCrossRefGoogle Scholar
- Sim SA, Long KS, Miller L, Turner TJ (2008) Multidimensional modelling of X-ray spectra for AGN accretion disc outflows. MNRAS 388:611–624. doi: 10.1111/j.1365-2966.2008.13466.x. arXiv:0805.2251 ADSCrossRefGoogle Scholar
- Sobolev VV (1960) Moving envelopes of starsGoogle Scholar
- Sobolev VV (1957) The Diffusion of L\(\alpha \) Radiation in Nebulae and Stellar Envelopes. SvA 1:678ADSGoogle Scholar
- Sutherland RS (1998) Accurate free-free Gaunt factors for astrophysical plasmas. MNRAS 300:321–330. doi: 10.1046/j.1365-8711.1998.01687.x ADSCrossRefGoogle Scholar
- Tatum MM, Turner TJ, Sim SA, Miller L, Reeves JN, Patrick AR, Long KS (2012) Modeling the Fe K Line Profiles in Type I Active Galactic Nuclei with a Compton-thick Disk Wind. ApJ 752:94. doi: 10.1088/0004-637X/752/2/94. arXiv:1204.2535 ADSCrossRefGoogle Scholar
- Turing AM (1948) Rounding off errors in matrix processes. QJMAM 1(1):287–308. doi: 10.1093/qjmam/1.1.287. http://qjmam.oxfordjournals.org/content/1/1/287.abstract. http://qjmam.oxfordjournals.org/content/1/1/287.full.pdf+html
- van Regemorter H (1962) Rate of Collisional Excitation in Stellar Atmospheres. ApJ 136:906. doi: 10.1086/147445 ADSCrossRefGoogle Scholar
- Verner DA, Ferland GJ, Korista KT, Yakovlev DG (1996a) Atomic Data for Astrophysics. II. New Analytic FITS for Photoionization Cross Sections of Atoms and Ions. ApJ 465:487. doi: 10.1086/177435. arXiv:astro-ph/9601009
- Verner DA, Barthel PD, Tytler D (1994) Atomic data for absorption lines from the ground level at wavelengths greater than 228A. A&As 108:287–340ADSGoogle Scholar
- Verner DA, Verner EM, Ferland GJ (1996b) Atomic Data for Permitted Resonance Lines of Atoms and Ions from H to Si, and S, Ar, Ca, and Fe. Atomic Data and Nuclear Data Tables 64:1. doi: 10.1006/adnd.1996.0018
- Woods JA (1991) PhD thesis, D. Phil thesis, Univ. Oxford, (1991)Google Scholar
Copyright information
© Springer International Publishing AG 2017