Monte Carlo Radiative Transfer and Ionization

  • James MatthewsEmail author
Part of the Springer Theses book series (Springer Theses)


In the previous chapters I have given an introduction to the field and some relevant background relating to accretion discs and their associated outflows.


Carlo Radiative Transfer Monte Carlo Radiative Transfer (MCRT) Ionization Cycles Sobolev Optical Depth Radiation Packet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbott DC, Lucy LB (1985) Multiline transfer and the dynamics of stellar winds. ApJ 288:679–693. doi: 10.1086/162834 ADSCrossRefGoogle Scholar
  2. Badnell NR (2006) Radiative Recombination Data for Modeling Dynamic Finite-Density Plasmas. ApJs 167:334–342. doi: 10.1086/508465. arXiv:astro-ph/0604144 ADSCrossRefGoogle Scholar
  3. Cunto W, Mendoza C, Ochsenbein F (1993) Zeippen CJ 275:L5Google Scholar
  4. Dere KP, Landi E, Mason HE, Monsignori Fossi BC, Young PR (1997) CHIANTI - an atomic database for emission lines. A&As 125:149–173. doi: 10.1051/aas:1997368 ADSCrossRefGoogle Scholar
  5. Ferland G (2002) Reliability in the Face of Complexity. The Challenge of High-End Scientific Computing, ArXiv Astrophysics e-prints arXiv:astro-ph/0210161 Google Scholar
  6. Ferland GJ, Porter RL, van Hoof PAM, Williams RJR, Abel NP, Lykins ML, Shaw G, Henney WJ, Stancil PC (2013) The 2013 Release of Cloudy. RMXAA 49:137–163 arXiv:1302.4485 ADSGoogle Scholar
  7. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Squyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine A, Castain RH, Daniel DJ, Graham RL, Woodall TS (2004) Open MPI: Goals, concept, and design of a next generation MPI implementation. Proceedings, 11th European PVM/MPI Users’ Group Meeting. Budapest, Hungary, pp 97–104Google Scholar
  8. Gayet R (1970) On the Average Gaunt Factor for Free-Free Emission. A&A 9:312ADSGoogle Scholar
  9. Gough B (2009) GNU Scientific Library Reference Manual - Third Edition, 3rd edn. Network Theory LtdGoogle Scholar
  10. Higginbottom N, Knigge C, Long KS, Sim SA, Matthews JH (2013) A simple disc wind model for broad absorption line quasars. MNRAS 436:1390–1407. doi: 10.1093/mnras/stt1658. arXiv:1308.5973 ADSCrossRefGoogle Scholar
  11. Higginbottom N, Proga D, Knigge C, Long KS, Matthews JH, Sim SA (2014) Line-driven Disk Winds in Active Galactic Nuclei: The Critical Importance of Ionization and Radiative Transfer. ApJ 789:19. doi: 10.1088/0004-637X/789/1/19. arXiv:1402.1849 ADSCrossRefGoogle Scholar
  12. Hubeny I (2001) From Escape Probabilities to Exact Radiative Transfer. In: Ferland G, Savin DW (eds) Spectroscopic Challenges of Photoionized Plasmas, Astronomical Society of the Pacific Conference Series, vol 247, p 197Google Scholar
  13. Humphrey A, Binette L (2014) Extreme C II emission in type 2 quasars at z\(\sim \) 2.5: a signature of \(\kappa \)-distributed electron energies? MNRAS 442:753–758. doi: 10.1093/mnras/stu723. arXiv:1404.6434 ADSCrossRefGoogle Scholar
  14. Kerzendorf WE, Sim SA (2014) A spectral synthesis code for rapid modelling of supernovae. MNRAS 440:387–404. doi: 10.1093/mnras/stu055. arXiv:1401.5469 ADSCrossRefGoogle Scholar
  15. Klein O, Nishina T (1929) Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Z Phys 52:853–868. doi: 10.1007/BF01366453
  16. Kromer M, Sim SA (2009) Time-dependent three-dimensional spectrum synthesis for Type Ia supernovae. MNRAS 398:1809–1826. doi: 10.1111/j.1365-2966.2009.15256.x. arXiv:0906.3152 ADSCrossRefGoogle Scholar
  17. Kurucz RL, Bell B (1995) Atomic line listGoogle Scholar
  18. Landi E, Del Zanna G, Young PR, Dere KP, Mason HE (2012) CHIANTI–An Atomic Database for Emission Lines. XII. Version 7 of the Database. ApJ 744:99. doi: 10.1088/0004-637X/744/2/99
  19. Long KS, Knigge C (2002) Modeling the Spectral Signatures of Accretion Disk Winds: A New Monte Carlo Approach. ApJ 579:725–740. doi: 10.1086/342879. arXiv:astro-ph/0208011 ADSCrossRefGoogle Scholar
  20. Lucy LB (2002) 384:725–735. doi: 10.1051/0004-6361:20011756. arXiv:astro-ph/0107377
  21. Lucy LB (2003) 403:261–275. doi: 10.1051/0004-6361:20030357. arXiv:astro-ph/0303202
  22. Lucy LB (1999a) Computing radiative equilibria with Monte Carlo techniques. A&A 344:282–288ADSGoogle Scholar
  23. Lucy LB (1999b) Improved Monte Carlo techniques for the spectral synthesis of supernovae. A&A 345:211–220ADSGoogle Scholar
  24. Mazzali PA, Lucy LB (1993) The application of Monte Carlo methods to the synthesis of early-time supernovae spectra. A&A 279:447–456ADSGoogle Scholar
  25. Menzel DH, Pekeris CL (1935) Absorption coefficients and hydrogen line intensities. MNRAS 96:77. doi: 10.1093/mnras/96.1.77 ADSzbMATHGoogle Scholar
  26. Mihalas D (1978) Stellar atmospheres /2nd edition/Google Scholar
  27. Osterbrock DE (1989) Astrophysics of gaseous nebulae and active galactic nucleiGoogle Scholar
  28. Rybicki G (1970) Theoretical Methods of Treating Line Formation Problems in Steady-State Extended Atmospheres (introductory Paper). In: Groth HG, Wellmann P (eds) IAU Colloq. 2: Spectrum Formation in Stars with Steady-State Extended Atmospheres, p 87Google Scholar
  29. Rybicki GB, Hummer DG (1978) A generalization of the Sobolev method for flows with nonlocal radiative coupling. ApJ 219:654–675. doi: 10.1086/155826 ADSMathSciNetCrossRefGoogle Scholar
  30. Seaton MJ (1959) The solution of capture-cascade equations for hydrogen. MNRAS 119:90ADSCrossRefGoogle Scholar
  31. Sim SA (2004) Mass-loss rates for hot luminous stars: the influence of line branching. MNRAS 349:899–908. doi: 10.1111/j.1365-2966.2004.07562.x. arXiv:astro-ph/0401149 ADSCrossRefGoogle Scholar
  32. Sim SA, Drew JE, Long KS (2005) Two-dimensional Monte Carlo simulations of HI line formation in massive young stellar object disc winds. MNRAS 363:615–627. doi: 10.1111/j.1365-2966.2005.09472.x. arXiv:astro-ph/0508103 ADSCrossRefGoogle Scholar
  33. Sim SA, Long KS, Miller L, Turner TJ (2008) Multidimensional modelling of X-ray spectra for AGN accretion disc outflows. MNRAS 388:611–624. doi: 10.1111/j.1365-2966.2008.13466.x. arXiv:0805.2251 ADSCrossRefGoogle Scholar
  34. Sobolev VV (1960) Moving envelopes of starsGoogle Scholar
  35. Sobolev VV (1957) The Diffusion of L\(\alpha \) Radiation in Nebulae and Stellar Envelopes. SvA 1:678ADSGoogle Scholar
  36. Sutherland RS (1998) Accurate free-free Gaunt factors for astrophysical plasmas. MNRAS 300:321–330. doi: 10.1046/j.1365-8711.1998.01687.x ADSCrossRefGoogle Scholar
  37. Tatum MM, Turner TJ, Sim SA, Miller L, Reeves JN, Patrick AR, Long KS (2012) Modeling the Fe K Line Profiles in Type I Active Galactic Nuclei with a Compton-thick Disk Wind. ApJ 752:94. doi: 10.1088/0004-637X/752/2/94. arXiv:1204.2535 ADSCrossRefGoogle Scholar
  38. van Regemorter H (1962) Rate of Collisional Excitation in Stellar Atmospheres. ApJ 136:906. doi: 10.1086/147445 ADSCrossRefGoogle Scholar
  39. Verner DA, Ferland GJ, Korista KT, Yakovlev DG (1996a) Atomic Data for Astrophysics. II. New Analytic FITS for Photoionization Cross Sections of Atoms and Ions. ApJ 465:487. doi: 10.1086/177435. arXiv:astro-ph/9601009
  40. Verner DA, Barthel PD, Tytler D (1994) Atomic data for absorption lines from the ground level at wavelengths greater than 228A. A&As 108:287–340ADSGoogle Scholar
  41. Verner DA, Verner EM, Ferland GJ (1996b) Atomic Data for Permitted Resonance Lines of Atoms and Ions from H to Si, and S, Ar, Ca, and Fe. Atomic Data and Nuclear Data Tables 64:1. doi: 10.1006/adnd.1996.0018
  42. Woods JA (1991) PhD thesis, D. Phil thesis, Univ. Oxford, (1991)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations