Advertisement

Accretion Disc Winds

  • James MatthewsEmail author
Chapter
  • 238 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

Observational evidence for mass-loaded outflows or winds is widespread across the entire astrophysical mass range and most of the electromagnetic spectrum.

Keywords

Accretion Disk Wind Outflow BAL QSOs Launch Radius Line-driven Wind 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Abbott DC (1982) The theory of radiatively driven stellar winds. II - The line acceleration. ApJ 259:282–301. doi: 10.1086/160166 Google Scholar
  2. Abbott DC, Lucy LB (1985) Multiline transfer and the dynamics of stellar winds. ApJ 288:679–693. doi: 10.1086/162834 ADSCrossRefGoogle Scholar
  3. Adams FC, Graff DS, Richstone DO (2001) A Theoretical Model for the M\(_{BH}\)-\(\sigma \) Relation for Supermassive Black Holes in Galaxies. ApJ Letters 551:L31–L35. doi: 10.1086/319828. arXiv:astro-ph/0010549 ADSCrossRefGoogle Scholar
  4. Allen JT, Hewett PC, Maddox N, Richards GT, Belokurov V (2011) A strong redshift dependence of the broad absorption line quasar fraction. MNRAS 410:860–884. doi: 10.1111/j.1365-2966.2010.17489.x. arXiv:1007.3991 ADSCrossRefGoogle Scholar
  5. Arav N (1996) The “Ghost of LY alpha” as Evidence for Radiative Acceleration in Quasars. ApJ 465:617. doi: 10.1086/177447
  6. Arav N, Korista KT, Barlow TA, Begelman, (1995) Radiative acceleration of gas in quasars. Nature 376:576–578. doi: 10.1038/376576a0
  7. Baldry IK, Glazebrook K, Brinkmann J, Ivezić Ž, Lupton RH, Nichol RC, Szalay AS (2004) Quantifying the Bimodal Color-Magnitude Distribution of Galaxies. ApJ 600:681–694. doi: 10.1086/380092. arXiv:astro-ph/0309710 ADSCrossRefGoogle Scholar
  8. Baptista R, Silveira C, Steiner JE, Horne K (2000) Spatially resolved spectra of the accretion disc of the nova-like variable UU Aquarii. MNRAS 314:713–726. doi: 10.1046/j.1365-8711.2000.03325.x. arXiv:astro-ph/0002189 ADSCrossRefGoogle Scholar
  9. Barnard R, Foulkes SB, Haswell CA, Kolb U, Osborne JP, Murray JR (2006) Disc precession in the M31 dipping X-ray binary Bo 158? MNRAS 366:287–294. doi: 10.1111/j.1365-2966.2005.09852.x. arXiv:astro-ph/0503259 ADSCrossRefGoogle Scholar
  10. Becker RH, White RL, Gregg MD, Brotherton MS, Laurent-Muehleisen SA, Arav N (2000) Properties of Radio-selected Broad Absorption Line Quasars from the First Bright Quasar Survey. ApJ 538:72–82. doi: 10.1086/309099. arXiv:astro-ph/0002470 ADSCrossRefGoogle Scholar
  11. Begelman MC, McKee CF, Shields GA (1983) Compton heated winds and coronae above accretion disks. I Dynamics. ApJ 271:70–88. doi: 10.1086/161178 Google Scholar
  12. Bell EF, McIntosh DH, Katz N, Weinberg MD (2003) The Optical and Near-Infrared Properties of Galaxies. I. Luminosity and Stellar Mass Functions. ApJs 149:289–312. doi: 10.1086/378847. arXiv:astro-ph/0302543 Google Scholar
  13. Bîrzan L, McNamara BR, Nulsen PEJ, Carilli CL, Wise MW (2008) Radiative Efficiency and Content of Extragalactic Radio Sources: Toward a Universal Scaling Relation between Jet Power and Radio Power. ApJ 686:859–880. doi: 10.1086/591416. arXiv:0806.1929 ADSCrossRefGoogle Scholar
  14. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883–903ADSzbMATHCrossRefGoogle Scholar
  15. Bongiorno A, Schulze A, Merloni A, Zamorani G, Ilbert O, La Franca F, Peng Y, Piconcelli E, Mainieri V, Silverman JD, Brusa M, Fiore F, Salvato M, Scoville N (2016) GN host galaxy mass function in COSMOS. Is AGN feedback responsible for the mass-quenching of galaxies? AAP 588:A78. doi: 10.1051/0004-6361/201527436, 1601.02091
  16. Borguet BCJ, Edmonds D, Arav N, Dunn J, Kriss GA (2012) A 10 kpc Scale Seyfert Galaxy Outflow: HST/COS Observations of IRAS F22456–5125. ApJ 751:107. doi: 10.1088/0004-637X/751/2/107. arXiv:1205.0189 ADSCrossRefGoogle Scholar
  17. Borguet BCJ, Arav N, Edmonds D, Chamberlain C, Benn C (2013) Major Contributor to AGN Feedback: VLT X-shooter Observations of S IV BALQSO Outflows. ApJ 762:49. doi: 10.1088/0004-637X/762/1/49. arXiv:1211.6250 ADSCrossRefGoogle Scholar
  18. Borguet B, Hutsemékers D (2010) polar+equatorial wind model for broad absorption line quasars. I. Fitting the C IV BAL profiles. AAP 515:A22. doi: 10.1051/0004-6361/200913255. 1003.2386
  19. Boroson TA, Meyers KA (1992) The optical properties of IR-selected and MG II broad absorption line quasars. ApJ 397:442–451. doi: 10.1086/171800 ADSCrossRefGoogle Scholar
  20. Bowler RAA, Hewett PC, Allen JT, Ferland GJ (2014) Line-driven radiative outflows in luminous quasars. MNRAS 445:359–377. doi: 10.1093/mnras/stu1730. arXiv:1408.5808 ADSCrossRefGoogle Scholar
  21. Braito V, Reeves JN, Dewangan GC, George I, Griffiths RE, Markowitz A, Nandra K, Porquet D, Ptak A, Turner TJ, Yaqoob T, Weaver K (2007) Relativistic Iron K Emission and Absorption in the Seyfert 1.9 Galaxy MCG -5-23-16. ApJ 670:978–991. doi: 10.1086/521916. arXiv:0707.2950 ADSCrossRefGoogle Scholar
  22. Brown JC, Richardson LL, Antokhin I, Robert C, Moffat AFJ, St-Louis N (1995) Combined spectrometric, photometric and polarimetric diagnostics for ‘blobs’ in WR star winds. A&A 295:725ADSGoogle Scholar
  23. Burkert A, Silk J (2001) Star Formation-Regulated Growth of Black Holes in Protogalactic Spheroids. ApJ Letters 554:L151–L154. doi: 10.1086/321698. arXiv:astro-ph/0011511 ADSCrossRefGoogle Scholar
  24. Capellupo DM, Hamann F, Shields JC, Rodríguez Hidalgo P, Barlow TA (2011) Variability in quasar broad absorption line outflows - I. Trends in the short-term versus long-term data. MNRAS 413:908–920. doi: 10.1111/j.1365-2966.2010.18185.x. arXiv:1012.2336 ADSCrossRefGoogle Scholar
  25. Capellupo DM, Hamann F, Shields JC, Rodríguez Hidalgo P, Barlow TA (2012) Variability in quasar broad absorption line outflows - II. Multi-epoch monitoring of Si IV and C IV broad absorption line variability. MNRAS 422:3249–3267. doi: 10.1111/j.1365-2966.2012.20846.x. arXiv:1203.1051 ADSCrossRefGoogle Scholar
  26. Capellupo DM, Hamann F, Barlow TA (2014) A variable P v broad absorption line and quasar outflow energetics. MNRAS 444:1893–1900. doi: 10.1093/mnras/stu1502. arXiv:1407.7532 ADSCrossRefGoogle Scholar
  27. Cappi M, Mihara T, Matsuoka M, Hayashida K, Weaver KA, Otani C (1996) Warm Absorber, Reflection, and Fe K Line in the X-Ray Spectrum of IC 4329A. ApJ 458:149. doi: 10.1086/176799. arXiv:astro-ph/9510065 ADSCrossRefGoogle Scholar
  28. Castor JL (1974) On the force associated with absorption of spectral line radiation. MNRAS 169:279–306ADSCrossRefGoogle Scholar
  29. Castor JI, Abbott DC, Klein RI (1975) Radiation-driven winds in Of stars. ApJ 195:157–174. doi: 10.1086/153315 Google Scholar
  30. Cavagnolo KW, McNamara BR, Wise MW, Nulsen PEJ, Brüggen M, Gitti M, Rafferty DA (2011) A Powerful AGN Outburst in RBS 797. ApJ 732:71. doi: 10.1088/0004-637X/732/2/71. arXiv:1103.0630 ADSCrossRefGoogle Scholar
  31. Chamberlain C, Arav N, Benn C (2015) Strong candidate for AGN feedback: VLT/X-shooter observations of BALQSO SDSS J0831+0354. MNRAS 450:1085–1093. doi: 10.1093/mnras/stv572 ADSCrossRefGoogle Scholar
  32. Chen B, Dai X, Baron E (2013a) Inclination-dependent Active Galactic Nucleus Flux Profiles from Strong Lensing of the Kerr Spacetime. ApJ 762:122. doi: 10.1088/0004-637X/762/2/122. arXiv:1211.2510 ADSCrossRefGoogle Scholar
  33. Chen B, Dai X, Baron E, Kantowski R (2013b) Effects of Kerr Strong Gravity on Quasar X-Ray Microlensing. ApJ 769:131. doi: 10.1088/0004-637X/769/2/131. arXiv:1211.6487 ADSCrossRefGoogle Scholar
  34. Church MJ, Reed D, Dotani T, Bałucińska-Church M, Smale AP (2005) Discovery of absorption features of the accretion disc corona and systematic acceleration of the X-ray burst rate in XB1323-619. MNRAS 359:1336–1344. doi: 10.1111/j.1365-2966.2005.08728.x. arXiv:astro-ph/0412228 ADSCrossRefGoogle Scholar
  35. Clavel J, Schartel N, Tomas L (2006) Long observations of the BALQSO LBQS 2212–1759 with XMM-Newton. A&A 446:439–446. doi: 10.1051/0004-6361:20041963. arXiv:astro-ph/0509432 ADSCrossRefGoogle Scholar
  36. Cohen MH, Ogle PM, Tran HD, Vermeulen RC, Miller JS, Goodrich RW, Martel AR (1995) Spectropolarimetry of Two Broad Absorption Line Quasars with the W. M. Keck Telescope. ApJ Letters 448:L77. doi: 10.1086/309602 ADSGoogle Scholar
  37. Connolly SD, McHardy IM, Dwelly T (2014) Long-term wind-driven X-ray spectral variability of NGC 1365 with Swift. MNRAS 440:3503–3510. doi: 10.1093/mnras/stu546. arXiv:1403.4253 ADSCrossRefGoogle Scholar
  38. Cordova FA, Mason KO (1982) High-velocity winds from a dwarf nova during outburst. ApJ 260:716–721. doi: 10.1086/160291 ADSCrossRefGoogle Scholar
  39. Cottis CE, Goad MR, Knigge C, Scaringi S (2010) Searching for the signature of radiative line driving: on the absence of Ly\(\alpha \)-NV line-locking features in a large sample of BALQSOs. MNRAS 406:2094–2112. doi: 10.1111/j.1365-2966.2010.16839.x. arXiv:1004.2145 ADSGoogle Scholar
  40. Crenshaw DM, Kraemer SB (2012) Feedback from Mass Outflows in Nearby Active Galactic Nuclei. I. Ultraviolet and X-Ray Absorbers. ApJ 753:75. doi: 10.1088/0004-637X/753/1/75. arXiv:1204.6694 Google Scholar
  41. Crenshaw DM, Kraemer SB, Gabel JR, Kaastra JS, Steenbrugge KC, Brinkman AC, Dunn JP, George IM, Liedahl DA, Paerels FBS, Turner TJ, Yaqoob T (2003) Simultaneous Ultraviolet and X-Ray Spectroscopy of the Seyfert 1 Galaxy NGC 5548. I. Physical Conditions in the Ultraviolet Absorbers. ApJ 594:116–127. doi: 10.1086/376792. arXiv:astro-ph/0305154 ADSCrossRefGoogle Scholar
  42. Croton DJ, Springel V, White SDM, De Lucia G, Frenk CS, Gao L, Jenkins A, Kauffmann G, Navarro JF, Yoshida N (2006) The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. MNRAS 365:11–28. doi: 10.1111/j.1365-2966.2005.09675.x. arXiv:astro-ph/0508046 ADSCrossRefGoogle Scholar
  43. Dai X, Shankar F, Sivakoff GR (2008) 2MASS Reveals a Large Intrinsic Fraction of BALQSOs. ApJ 672:108–114. doi: 10.1086/523688. arXiv:0704.2882 ADSCrossRefGoogle Scholar
  44. Dai X, Shankar F, Sivakoff GR (2012) The Intrinsic Fractions and Radio Properties of Low-ionization Broad Absorption Line Quasars. ApJ 757:180. doi: 10.1088/0004-637X/757/2/180. arXiv:1004.0700 ADSCrossRefGoogle Scholar
  45. de Kool M, Begelman MC (1995) Radiation Pressure-driven Magnetic Disk Winds in Broad Absorption Line Quasi-stellar Objects. ApJ 455:448. doi: 10.1086/176594 ADSCrossRefGoogle Scholar
  46. Done C, Jin C (2015) The Mass and Spin of The Extreme Narrow Line Seyfert 1 Galaxy 1H0707-495 and Its Implications for The Trigger for Relativistic Jets. ArXiv e-prints arXiv:1506.04547
  47. Drew J, Verbunt F (1985) Investigation of a wind model for cataclysmic variable ultraviolet resonance line emission. MNRAS 213:191–213ADSCrossRefGoogle Scholar
  48. Elvis M (2000) A Structure for Quasars. ApJ 545:63–76. DOI 10.1086/317778, arXiv:arXiv:astro-ph/0008064
  49. Fabian AC (2012) Observational Evidence of Active Galactic Nuclei Feedback. ARAA 50:455–489. doi: 10.1146/annurev-astro-081811-125521. arXiv:1204.4114 ADSCrossRefGoogle Scholar
  50. Fabian AC, Kunieda H, Inoue S, Matsuoka M, Mihara T, Miyamoto S, Otani C, Ricker G, Tanaka Y, Yamauchi M, Yaqoob T (1994) ASCA observations of the warm absorber in MCG-6-30-15: The discovery of a change in column density. PASJ 46:L59–L63ADSGoogle Scholar
  51. Feldmeier A (1995) Time-dependent structure and energy transfer in hot star winds. A&A 299:523ADSGoogle Scholar
  52. Ferrarese L, Merritt D (2000) A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies. ApJ Letters 539:L9–L12. doi: 10.1086/312838. arXiv:astro-ph/0006053 ADSCrossRefGoogle Scholar
  53. Filiz Ak N, Brandt WN, Hall PB, Schneider DP, Anderson SF, Gibson RR, Lundgren BF, Myers AD, Petitjean P, Ross NP, Shen Y, York DG, Bizyaev D, Brinkmann J, Malanushenko E, Oravetz DJ, Pan K, Simmons AE, Weaver BA (2012) Broad Absorption Line Disappearance on Multi-year Timescales in a Large Quasar Sample. ApJ 757:114. doi: 10.1088/0004-637X/757/2/114. arXiv:1208.0836 ADSCrossRefGoogle Scholar
  54. Flohic HMLG, Eracleous M, Bogdanović T (2012) Effects of an Accretion Disk Wind on the Profile of the Balmer Emission Lines from Active Galactic Nuclei. ApJ 753:133. doi: 10.1088/0004-637X/753/2/133 ADSCrossRefGoogle Scholar
  55. Foltz CB, Weymann RJ, Morris SL, Turnshek DA (1987) The complex absorption spectrum of the broad absorption line QSO 1303 + 308. ApJ 317:450–459. doi: 10.1086/165290 ADSCrossRefGoogle Scholar
  56. Friend DB, Abbott DC (1986) The theory of radiatively driven stellar winds. III - Wind models with finite disk correction and rotation. ApJ 311:701–707. doi: 10.1086/164809 ADSCrossRefGoogle Scholar
  57. Fukumura K, Tombesi F, Kazanas D, Shrader C, Behar E, Contopoulos I (2015) Magnetically Driven Accretion Disk Winds and Ultra-fast Outflows in PG 1211+143. ApJ 805:17. doi: 10.1088/0004-637X/805/1/17. arXiv:1503.04074
  58. Gallagher SC, Brandt WN, Sambruna RM, Mathur S, Yamasaki N (1999) Exploratory ASCA Observations of Broad Absorption Line Quasi-stellar Objects. ApJ 519:549–555. doi: 10.1086/307405. arXiv:astro-ph/9902045 ADSCrossRefGoogle Scholar
  59. Gallagher SC, Brandt WN, Chartas G, Garmire GP (2002) X-Ray Spectroscopy of Quasi-Stellar Objects with Broad Ultraviolet Absorption Lines. ApJ 567:37–41. doi: 10.1086/338485. arXiv:astro-ph/0110579 ADSCrossRefGoogle Scholar
  60. Ganguly R, Bond NA, Charlton JC, Eracleous M, Brandt WN, Churchill CW (2001) On the Origin of Intrinsic Narrow Absorption Lines in z\(\lesssim \)1 QSOS. ApJ 549:133–154. doi: 10.1086/319082. arXiv:astro-ph/0010192 ADSCrossRefGoogle Scholar
  61. Ganguly R, Sembach KR, Tripp TM, Savage BD, Wakker BP (2006) High-Resolution Absorption Spectroscopy of Multiphase, High-Metallicity Gas Associated with the Luminous Quasar HE 0226–4110. ApJ 645:868–889. doi: 10.1086/504395. arXiv:astro-ph/0603492 ADSCrossRefGoogle Scholar
  62. Gebhardt K, Bender R, Bower G, Dressler A, Faber SM, Filippenko AV, Green R, Grillmair C, Ho LC, Kormendy J, Lauer TR, Magorrian J, Pinkney J, Richstone D, Tremaine S (2000) A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion. ApJ Letters 539:L13–L16. doi: 10.1086/312840. arXiv:astro-ph/0006289 ADSCrossRefGoogle Scholar
  63. Ghosh KK, Punsly B (2007) The Physical Nature of Polar Broad Absorption Line Quasars. ApJ Letters 661:L139–L142. doi: 10.1086/518859. arXiv:0704.2407 ADSCrossRefGoogle Scholar
  64. Gibson RR, Jiang L, Brandt WN, Hall PB, Shen Y, Wu J, Anderson SF, Schneider DP, Vanden Berk D, Gallagher SC, Fan X, York DG (2009) A Catalog of Broad Absorption Line Quasars in Sloan Digital Sky Survey Data Release 5. ApJ 692:758–777. doi: 10.1088/0004-637X/692/1/758. arXiv:0810.2747 ADSCrossRefGoogle Scholar
  65. Giustini M, Cappi M, Chartas G, Dadina M, Eracleous M, Ponti G, Proga D, Tombesi F, Vignali C, Palumbo GGC (2011) Variable X-ray absorption in the mini-BAL QSO PG 1126–041. A&A 536:A49. doi: 10.1051/0004-6361/201117732. arXiv:1109.6026 ADSCrossRefGoogle Scholar
  66. Gofford J, Reeves JN, Tombesi F, Braito V, Turner TJ, Miller L, Cappi M (2013) The Suzaku view of highly ionized outflows in AGN - I. Statistical detection and global absorber properties. MNRAS 430:60–80. doi: 10.1093/mnras/sts481. arXiv:1211.5810 ADSCrossRefGoogle Scholar
  67. Gofford J, Reeves JN, Braito V, Nardini E, Costa MT, Matzeu GA, O’Brien P, Ward M, Turner TJ, Miller L (2014) Revealing the Location and Structure of the Accretion Disk Wind in PDS 456. ApJ 784:77. doi: 10.1088/0004-637X/784/1/77. arXiv:1402.3700 ADSCrossRefGoogle Scholar
  68. Gofford J, Reeves JN, McLaughlin DE, Braito V, Turner TJ, Tombesi F, Cappi M (2015) The Suzaku view of highly ionized outflows in AGN - II. Location, energetics and scalings with bolometric luminosity. MNRAS 451:4169–4182. doi: 10.1093/mnras/stv1207. arXiv:1506.00614
  69. Goodrich RW (1997) On the Fraction of Broad Absorption Line Quasi-stellar Objects. ApJ 474:606–611ADSCrossRefGoogle Scholar
  70. Goodrich RW, Miller JS (1995) Polarization Clues to the Structure of Broad Absorption Line Quasi-stellar Objects. ApJ Letters 448:L73. doi: 10.1086/309600 ADSCrossRefGoogle Scholar
  71. Green PJ, Aldcroft TL, Mathur S, Wilkes BJ, Elvis M (2001) A Chandra Survey of Broad Absorption Line Quasars. ApJ 558:109–118. doi: 10.1086/322311. arXiv:astro-ph/0105258 ADSCrossRefGoogle Scholar
  72. Greenstein JL, Oke JB (1982) RW Sextantis, a disk with a hot, high-velocity wind. ApJ 258:209–216. doi: 10.1086/160069 ADSCrossRefGoogle Scholar
  73. Groot PJ, Rutten RGM, van Paradijs J (2004) A spectrophotometric study of RW Trianguli. A&A 417:283–291. doi: 10.1051/0004-6361:20031771. arXiv:astro-ph/0401029 ADSCrossRefGoogle Scholar
  74. Grupe D, Mathur S, Elvis M (2003a) XMM-Newton Observations of Two Broad Absorption Line QSOs: Q1246-057 and SBS 1542+541. AJ 126:1159–1166. doi: 10.1086/377141. arXiv:astro-ph/0305309
  75. Grupe D, Nousek JA (2015) Is There a Connection between Broad Absorption Line Quasars and Narrow-Line Seyfert 1 Galaxies? AJ 149:85. doi: 10.1088/0004-6256/149/2/85. arXiv:1412.8256
  76. Gültekin K, Richstone DO, Gebhardt K, Lauer TR, Tremaine S, Aller MC, Bender R, Dressler A, Faber SM, Filippenko AV, Green R, Ho LC, Kormendy J, Magorrian J, Pinkney J, Siopis C (2009) The M-\(\sigma \) and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter. ApJ 698:198–221. doi: 10.1088/0004-637X/698/1/198. arXiv:0903.4897 ADSCrossRefGoogle Scholar
  77. Hall PB, Anderson SF, Strauss MA, York DG, Richards GT, Fan X, Knapp GR, Schneider DP, Vanden Berk DE, Geballe TR, Bauer AE, Becker RH, Davis M, Rix HW, Nichol RC, Bahcall NA, Brinkmann J, Brunner R, Connolly AJ, Csabai I, Doi M, Fukugita M, Gunn JE, Haiman Z, Harvanek M, Heckman TM, Hennessy GS, Inada N, Ivezić Ž, Johnston D, Kleinman S, Krolik JH, Krzesinski J, Kunszt PZ, Lamb DQ, Long DC, Lupton RH, Miknaitis G, Munn JA, Narayanan VK, Neilsen E, Newman PR, Nitta A, Okamura S, Pentericci L, Pier JR, Schlegel DJ, Snedden S, Szalay AS, Thakar AR, Tsvetanov Z, White RL, Zheng W (2002) Unusual Broad Absorption Line Quasars from the Sloan Digital Sky Survey. ApJs 141:267–309. doi: 10.1086/340546. arXiv:astro-ph/0203252
  78. Hall PB, Anosov K, White RL, Brandt WN, Gregg MD, Gibson RR, Becker RH, Schneider DP (2011) Implications of dramatic broad absorption line variability in the quasar FBQS J1408+3054. MNRAS 411:2653–2666. doi: 10.1111/j.1365-2966.2010.17870.x. arXiv:1010.3728 ADSCrossRefGoogle Scholar
  79. Halpern JP (1984) Variable X-ray absorption in the QSO MR 2251–178. ApJ 281:90–94. doi: 10.1086/162077 ADSCrossRefGoogle Scholar
  80. Hamann WR, Oskinova LM, Feldmeier A (2008) Spectrum formation in clumpy stellar winds. In: Hamann WR, Feldmeier A, Oskinova LM (eds) Clumping in Hot-Star Winds, p 75Google Scholar
  81. Hamann WR, Leuenhagen U, Koesterke L, Wessolowski U (1992) Modelling the spectrum of WC-type Wolf-Rayet stars. A&A 255:200–214ADSGoogle Scholar
  82. Hamann WR, Wessolowski U, Koesterke L (1994) Non-LTE spectral analyses of Wolf-Rayet stars: The nitrogen spectrum of the WN6 prototype HD 192163 (WR136). A&A 281:184–198ADSGoogle Scholar
  83. Hamann F, Chartas G, McGraw S, Rodriguez Hidalgo P, Shields J, Capellupo D, Charlton J, Eracleous M (2013) Extreme-velocity quasar outflows and the role of X-ray shielding. MNRAS 435:133–148. doi: 10.1093/mnras/stt1231. arXiv:1307.1173 ADSCrossRefGoogle Scholar
  84. Häring N, Rix HW (2004) On the Black Hole Mass-Bulge Mass Relation. ApJ Letters 604:L89–L92. doi: 10.1086/383567. arXiv:arXiv:astro-ph/0402376
  85. Hazard C, Morton DC, Terlevich R, McMahon R (1984) Nine new quasi-stellar objects with broad absorption lines. ApJ 282:33–52. doi: 10.1086/162174 ADSCrossRefGoogle Scholar
  86. Heap SR, Boggess A, Holm A, Klinglesmith DA, Sparks W, West D, Wu CC, Boksenberg A, Willis A, Wilson R, Macchetto F, Selvelli PO, Stickland D, Greenstein JL, Hutchings JB, Underhill AB, Viotti R, Whelan JAJ (1978) IUE observations of hot stars - HZ43, BD +75 deg 325, NGC 6826, SS Cygni, Eta Carinae. Nature 275:385–388. doi: 10.1038/275385a0 ADSCrossRefGoogle Scholar
  87. Higginbottom N, Knigge C, Long KS, Sim SA, Matthews JH (2013) A simple disc wind model for broad absorption line quasars. MNRAS 436:1390–1407. doi: 10.1093/mnras/stt1658. arXiv:1308.5973 ADSCrossRefGoogle Scholar
  88. Higginbottom N, Proga D, Knigge C, Long KS, Matthews JH, Sim SA (2014) Line-driven Disk Winds in Active Galactic Nuclei: The Critical Importance of Ionization and Radiative Transfer. ApJ 789:19. doi: 10.1088/0004-637X/789/1/19. arXiv:1402.1849 ADSCrossRefGoogle Scholar
  89. Hillier DJ (1984) The influence of electron scattering on the He II line profiles in HD 50896. ApJ 280:744–748. doi: 10.1086/162047 ADSCrossRefGoogle Scholar
  90. Hillier DJ (1991) The effects of electron scattering and wind clumping for early emission line stars. A&A 247:455–468ADSGoogle Scholar
  91. Ioannou Z, van Zyl L, Naylor T, Charles PA, Margon B, Koch-Miramond L, Ilovaisky S (2003) Understanding the LMXB X2127+119 in M 15. II. The UV data. A&A 399:211–218. doi: 10.1051/0004-6361:20021578. arXiv:astro-ph/0212127 Google Scholar
  92. Kaastra JS, Mewe R, Liedahl DA, Komossa S, Brinkman AC (2000) X-ray absorption lines in the Seyfert 1 galaxy NGC 5548 discovered with Chandra-LETGS. A&A 354:L83–L86 arXiv:astro-ph/0002345 ADSGoogle Scholar
  93. Kaastra JS, Kriss GA, Cappi M, Mehdipour M, Petrucci PO, Steenbrugge KC, Arav N, Behar E, Bianchi S, Boissay R, Branduardi-Raymont G, Chamberlain C, Costantini E, Ely JC, Ebrero J, Di Gesu L, Harrison FA, Kaspi S, Malzac J, De Marco B, Matt G, Nandra K, Paltani S, Person R, Peterson BM, Pinto C, Ponti G, Nuñez FP, De Rosa A, Seta H, Ursini F, de Vries CP, Walton DJ, Whewell M (2014) A fast and long-lived outflow from the supermassive black hole in NGC 5548. Science 345:64–68. doi: 10.1126/science.1253787. arXiv:1406.5007 ADSCrossRefGoogle Scholar
  94. Kafka S, Honeycutt RK (2004) Detecting Outflows from Cataclysmic Variables in the Optical. AJ 128:2420–2429. doi: 10.1086/424618
  95. King A (2003) Black Holes, Galaxy Formation, and the M\(_{BH}\)-\(\sigma \) Relation. ApJ Letters 596:L27–L29. doi: 10.1086/379143. arXiv:astro-ph/0308342 ADSCrossRefGoogle Scholar
  96. Knigge C, Drew JE (1997) Eclipse Mapping of the Accretion Disk Wind in the Cataclysmic Variable UX Ursae Majoris. ApJ 486:445–456ADSCrossRefGoogle Scholar
  97. Knigge C, Woods JA, Drew JE (1995) The application of Monte Carlo methods to the synthesis of spectral line profiles arising from accretion disc winds. MNRAS 273:225–248ADSCrossRefGoogle Scholar
  98. Knigge C, Long KS, Blair WP, Wade RA (1997) Disks, Winds, and Veiling Curtains: Dissecting the Ultraviolet Spectrum of the Dwarf Nova Z Camelopardalis in Outburst. ApJ 476:291–310ADSCrossRefGoogle Scholar
  99. Knigge C, Scaringi S, Goad MR, Cottis CE (2008) The intrinsic fraction of broad-absorption line quasars. MNRAS 386:1426–1435. doi: 10.1111/j.1365-2966.2008.13081.x. arXiv:0802.3697 ADSCrossRefGoogle Scholar
  100. Konigl A, Kartje JF (1994) Disk-driven hydromagnetic winds as a key ingredient of active galactic nuclei unification schemes. ApJ 434:446–467. doi: 10.1086/174746 ADSCrossRefGoogle Scholar
  101. Kormendy J, Ho LC (2013) Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies. ARAA 51:511–653. doi: 10.1146/annurev-astro-082708-101811. arXiv:1304.7762 ADSCrossRefGoogle Scholar
  102. Kotani T, Ebisawa K, Dotani T, Inoue H, Nagase F, Tanaka Y, Ueda Y (2000) ASCA Observations of the Absorption Line Features from the Superluminal Jet Source GRS 1915+105. ApJ 539:413–423. doi: 10.1086/309200. arXiv:astro-ph/0003237 ADSCrossRefGoogle Scholar
  103. Kriss GA, Krolik JH, Otani C, Espey BR, Turner TJ, Kii T, Tsvetanov Z, Takahashi T, Davidsen AF, Tashiro M, Zheng W, Murakami S, Petre R, Mihara T (1996) ASCA Observations of the Composite Warm Absorber in NGC 3516. ApJ 467:629. doi: 10.1086/177638. arXiv:astro-ph/9603057 ADSCrossRefGoogle Scholar
  104. Krolik JH, Kriss GA (2001) Warm Absorbers in Active Galactic Nuclei: A Multitemperature Wind. ApJ 561:684–690. doi: 10.1086/323442 ADSCrossRefGoogle Scholar
  105. Krolik JH, Voit GM (1998) What Is the True Covering Factor of Absorbing Matter in BALQSOs? ApJ Letters 497:L5–L8. doi: 10.1086/311274. arXiv:astro-ph/9802082 ADSCrossRefGoogle Scholar
  106. Kudoh T, Shibata K (1997) Magnetically Driven Jets from Accretion Disks. I. Steady Solutions and Application to Jets/Winds in Young Stellar Objects. ApJ 474:362–377ADSCrossRefGoogle Scholar
  107. Kusterer DJ, Nagel T, Hartmann S, Werner K, Feldmeier A (2014) Monte Carlo radiation transfer in CV disk winds: application to the AM CVn prototype. A&A 561:A14. doi: 10.1051/0004-6361/201321438 ADSCrossRefGoogle Scholar
  108. Long KS, Knigge C (2002) Modeling the Spectral Signatures of Accretion Disk Winds: A New Monte Carlo Approach. APJ 579:725–740. doi: 10.1086/342879. arXiv:astro-ph/0208011 ADSCrossRefGoogle Scholar
  109. Lucy LB, Solomon PM (1970) Mass Loss by Hot Stars. ApJ 159:879. doi: 10.1086/150365 Google Scholar
  110. MacGregor KB, Hartmann L, Raymond JC (1979) Radiative amplification of sound waves in the winds of O and B stars. ApJ 231:514–523. doi: 10.1086/157213 ADSCrossRefGoogle Scholar
  111. Magorrian J, Tremaine S, Richstone D, Bender R, Bower G, Dressler A, Faber SM, Gebhardt K, Green R, Grillmair C, Kormendy J, Lauer T (1998) The Demography of Massive Dark Objects in Galaxy Centers. AJ 115:2285–2305. doi: 10.1086/300353. arXiv:astro-ph/9708072
  112. Matthews JH, Knigge C, Long KS, Sim SA, Higginbottom N, Mangham SW (2016) Testing quasar unification: radiative transfer in clumpy winds. MNRAS 458:293–305. doi: 10.1093/mnras/stw323. arXiv:1602.02765
  113. Matthews JH, Knigge C, Long KS, Sim SA, Higginbottom N (2015) The impact of accretion disc winds on the optical spectra of cataclysmic variables. MNRAS 450:3331–3344. doi: 10.1093/mnras/stv867 ADSCrossRefGoogle Scholar
  114. Matzeu GA, Reeves JN, Nardini E, Braito V, Costa MT, Tombesi F, Gofford J (2016) Short-term X-ray spectral variability of the quasar PDS 456 observed in a low-flux state. MNRAS 458:1311–1329. doi: 10.1093/mnras/stw354. arXiv:1602.04023
  115. Mauche CW, Raymond JC (1987) IUE observations of the dwarf nova HL Canis Majoris and the winds of cataclysmic variables. ApJ 323:690–713. doi: 10.1086/165865 ADSCrossRefGoogle Scholar
  116. McConnell NJ, Ma CP (2013) Revisiting the Scaling Relations of Black Hole Masses and Host Galaxy Properties. ApJ 764:184. doi: 10.1088/0004-637X/764/2/184. arXiv:1211.2816 ADSCrossRefGoogle Scholar
  117. Misawa T, Charlton JC, Eracleous M, Ganguly R, Tytler D, Kirkman D, Suzuki N, Lubin D (2007) A Census of Intrinsic Narrow Absorption Lines in the Spectra of Quasars at z = 2–4. ApJs 171:1–28. doi: 10.1086/513713. arXiv:astro-ph/0702101 ADSCrossRefGoogle Scholar
  118. Misawa T, Eracleous M, Chartas G, Charlton JC (2008) Exploratory Study of the X-Ray Properties of Quasars with Intrinsic Narrow Absorption Lines. ApJ 677:863–879. doi: 10.1086/529426. arXiv:0801.1692 ADSCrossRefGoogle Scholar
  119. Morabito LK, Dai X, Leighly KM, Sivakoff GR, Shankar F (2013) Unveiling the Intrinsic X-ray Properties of Broad Absorption Line Quasars with a Relatively Unbiased Sample. ArXiv e-prints arXiv:1309.5978
  120. Murray N, Chiang J (1996) Wind-dominated optical line emission from accretion disks around luminous cataclysmic variable stars. Nature 382:789–791. doi: 10.1038/382789a0 ADSCrossRefGoogle Scholar
  121. Murray N, Chiang J (1997) Disk Winds and Disk Emission Lines. ApJ 474:91–103ADSCrossRefGoogle Scholar
  122. Murray N, Chiang J, Grossman SA, Voit GM (1995) Accretion Disk Winds from Active Galactic Nuclei. ApJ 451:498. doi: 10.1086/176238 ADSCrossRefGoogle Scholar
  123. Nardini E, Reeves JN, Gofford J, Harrison FA, Risaliti G, Braito V, Costa MT, Matzeu GA, Walton DJ, Behar E, Boggs SE, Christensen FE, Craig WW, Hailey CJ, Matt G, Miller JM, O’Brien PT, Stern D, Turner TJ, Ward MJ (2015) Black hole feedback in the luminous quasar PDS 456. Science 347:860–863. doi: 10.1126/science.1259202. arXiv:1502.06636
  124. Nestor D, Hamann F, Rodriguez Hidalgo P (2008) The quasar-frame velocity distribution of narrow CIV absorbers. MNRAS 386:2055–2064. doi: 10.1111/j.1365-2966.2008.13156.x. arXiv:0803.0326 ADSCrossRefGoogle Scholar
  125. Noebauer UM, Long KS, Sim SA, Knigge C (2010) The Geometry and Ionization Structure of the Wind in the Eclipsing Nova-like Variables RW Tri and UX UMa. ApJ 719:1932–1945. doi: 10.1088/0004-637X/719/2/1932. arXiv:1007.0209 ADSCrossRefGoogle Scholar
  126. North M, Knigge C, Goad M (2006) A new sample of broad absorption-line quasars exhibiting the ghost of Lyman \(\alpha \). MNRAS 365:1057–1066. doi: 10.1111/j.1365-2966.2005.09828.x. arXiv:astro-ph/0511133 ADSCrossRefGoogle Scholar
  127. O’Dowd MJ, Bate NF, Webster RL, Labrie K, Rogers J (2015) Microlensing Constraints on Broad Absorption and Emission Line Flows in the Quasar H1413+117. ArXiv e-prints arXiv:1504.07160
  128. Orr A, Molendi S, Fiore F, Grandi P, Parmar AN, Owens A (1997) Soft X-ray observations of the complex warm absorber in MCG-6-30-15 with BeppoSAX. A&A 324:L77–L80 arXiv:astro-ph/9706133 ADSGoogle Scholar
  129. Otani C, Kii T, Reynolds CS, Fabian AC, Iwasawa K, Hayashida K, Inoue H, Kunieda H, Makino F, Matsuoka M, Tanaka Y (1996) The Variable O, VIII Warm Absorber in MCG-6-30-15. PASJ 48:211–218. doi: 10.1093/pasj/48.2.211. arXiv:astro-ph/9511063 ADSGoogle Scholar
  130. Ouyed R, Pudritz RE (1997) Numerical Simulations of Astrophysical Jets from Keplerian Disks. I. Stationary Models. ApJ 482:712–732Google Scholar
  131. Owocki S (2014) Theory of Winds from Hot. Luminous Massive Stars, ArXiv e-prints arXiv:1409.2084 Google Scholar
  132. Owocki SP, Rybicki GB (1984) Instabilities in line-driven stellar winds. I - Dependence on perturbation wavelength. ApJ 284:337–350. doi: 10.1086/162412 ADSCrossRefGoogle Scholar
  133. Owocki SP, Rybicki GB (1985) Instabilities in line-driven stellar winds. II - Effect of scattering. ApJ 299:265–276. doi: 10.1086/163697 Google Scholar
  134. Owocki SP, Castor JI, Rybicki GB (1988) Time-dependent models of radiatively driven stellar winds. I - Nonlinear evolution of instabilities for a pure absorption model. ApJ 335:914–930. doi: 10.1086/166977 ADSCrossRefGoogle Scholar
  135. Parmar AN, Oosterbroek T, Boirin L, Lumb D (2002) Discovery of narrow X-ray absorption features from the dipping low-mass X-ray binary X 1624–490 with XMM-Newton. A&A 386:910–915. doi: 10.1051/0004-6361:20020281. arXiv:astro-ph/0202452 ADSCrossRefGoogle Scholar
  136. Patterson J, Patino R, Thorstensen JR, Harvey D, Skillman DR, Ringwald FA (1996) Periods and Quasiperiods in the Cataclysmic Variable BZ Camelopardalis. AJ 111:2422. doi: 10.1086/117976
  137. Pauldrach A, Puls J, Kudritzki RP (1986) Radiation-driven winds of hot luminous stars - Improvements of the theory and first results. A&A 164:86–100ADSzbMATHGoogle Scholar
  138. Pauldrach AWA, Kudritzki RP, Puls J, Butler K, Hunsinger J (1994) Radiation-driven winds of hot luminous stars. 12: A first step towards detailed UV-line diagnostics of O-stars. A&A 283:525–560ADSGoogle Scholar
  139. Pelletier G, Pudritz RE (1992) Hydromagnetic disk winds in young stellar objects and active galactic nuclei. ApJ 394:117–138. doi: 10.1086/171565 ADSCrossRefGoogle Scholar
  140. Pereyra NA, Kallman TR, Blondin JM (1997) Hydrodynamical Models of Line-driven Accretion Disk Winds. ApJ 477:368–378ADSCrossRefGoogle Scholar
  141. Ponti G, Fender RP, Begelman MC, Dunn RJH, Neilsen J, Coriat M (2012) Ubiquitous equatorial accretion disc winds in black hole soft states. MNRAS 422:L11. doi: 10.1111/j.1745-3933.2012.01224.x. arXiv:1201.4172 ADSCrossRefGoogle Scholar
  142. Pounds KA, Reeves JN (2009) Quantifying the fast outflow in the luminous Seyfert galaxy PG1211+143. MNRAS 397:249–257. doi: 10.1111/j.1365-2966.2009.14971.x. arXiv:0811.3108 ADSCrossRefGoogle Scholar
  143. Pounds K, Lobban A, Reeves J, Vaughan S (2016) Detection of a second high-velocity component in the highly ionized wind from PG 1211+143. MNRAS 457:2951–2957. doi: 10.1093/mnras/stw165. arXiv:1601.05367
  144. Prinja RK, Smith LJ (1992) Migrating optical depth enhancements in the UV wind lines of the Wolf-Rayet star HD 93131. A&A 266:377–384ADSGoogle Scholar
  145. Proga D (2005) Theory of Outflows in Cataclysmic Variables. In: Hameury JM, Lasota JP (eds) The Astrophysics of Cataclysmic Variables and Related Objects, Astronomical Society of the Pacific Conference Series, vol 330, p 103, arXiv:astro-ph/0411200
  146. Proga D (2003) Numerical Simulations of Mass Outflows Driven from Accretion Disks by Radiation and Magnetic Forces. ApJ 585:406–417. doi: 10.1086/345897. arXiv:astro-ph/0210642 ADSCrossRefGoogle Scholar
  147. Proga D, Stone JM, Drew JE (1998) Radiation-driven winds from luminous accretion discs. MNRAS 295:595. doi: 10.1046/j.1365-8711.1998.01337.x. arXiv:astro-ph/9710305 ADSCrossRefGoogle Scholar
  148. Proga D, Kallman TR, Drew JE, Hartley LE (2002a) Resonance Line Profile Calculations Based on Hydrodynamical Models of Cataclysmic Variable Winds. ApJ 572:382–391. doi: 10.1086/340339. arXiv:astro-ph/0202384 ADSCrossRefGoogle Scholar
  149. Proga D, Kallman TR (2004) Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. II. Effects of Disk Radiation. ApJ 616:688–695. doi: 10.1086/425117. arXiv:arXiv:astro-ph/0408293
  150. Proga D, Stone JM, Kallman TR (2000) Dynamics of Line-driven Disk Winds in Active Galactic Nuclei. ApJ 543:686–696. doi: 10.1086/317154. arXiv:arXiv:astro-ph/0005315
  151. Puebla RE, Diaz MP, Hillier DJ, Hubeny I (2011) A Method for the Study of Accretion Disk Emission in Cataclysmic Variables. I. The Model. ApJ 736:17. doi: 10.1088/0004-637X/736/1/17. arXiv:1105.0851 Google Scholar
  152. Randall SW, Forman WR, Giacintucci S, Nulsen PEJ, Sun M, Jones C, Churazov E, David LP, Kraft R, Donahue M, Blanton EL, Simionescu A, Werner N (2011) Shocks and Cavities from Multiple Outbursts in the Galaxy Group NGC 5813: A Window to Active Galactic Nucleus Feedback. ApJ 726:86. doi: 10.1088/0004-637X/726/2/86. arXiv:1006.4379 ADSCrossRefGoogle Scholar
  153. Read JI, Trentham N (2005) The baryonic mass function of galaxies. Philosophical Transactions of the Royal Society of London Series A 363. doi: 10.1098/rsta.2005.1648. arXiv:astro-ph/0502517
  154. Reeves JN, Wynn G, O’Brien PT, Pounds KA (2002) Extreme X-ray variability in the luminous quasar PDS 456. MNRAS 336:L56–L60. doi: 10.1046/j.1365-8711.2002.06038.x. arXiv:astro-ph/0209120 ADSCrossRefGoogle Scholar
  155. Reeves JN, O’Brien PT, Ward MJ (2003) A Massive X-Ray Outflow from the Quasar PDS 456. ApJ Letters 593:L65–L68. doi: 10.1086/378218. arXiv:astro-ph/0307127 ADSCrossRefGoogle Scholar
  156. Reichard TA, Richards GT, Hall PB, Schneider DP, Vanden Berk DE, Fan X, York DG, Knapp GR, Brinkmann J (2003) Continuum and Emission-Line Properties of Broad Absorption Line Quasars. AJ 126:2594–2607. doi: 10.1086/379293. arXiv:arXiv:astro-ph/0308508
  157. Reynolds CS, Fabian AC (1995) Warm absorbers in active galactic nuclei. MNRAS 273:1167–1176. doi: 10.1093/mnras/273.4.1167. arXiv:astro-ph/9502006 ADSCrossRefGoogle Scholar
  158. Ringwald FA, Naylor T (1998) High-speed optical spectroscopy of a cataclysmic variable wind–BZ Camelopardalis. AJ 115:286. doi: 10.1086/300192. astro-ph/9710021
  159. Romanova MM, Ustyugova GV, Koldoba AV, Chechetkin VM, Lovelace RVE (1997) Formation of Stationary Magnetohydrodynamic Outflows from a Disk by Time-dependent Simulations. ApJ 482:708–711ADSzbMATHCrossRefGoogle Scholar
  160. Rupke DSN, Veilleux S (2011) Integral Field Spectroscopy of Massive, Kiloparsec-scale Outflows in the Infrared-luminous QSO Mrk 231. ApJ Letters 729:L27. doi: 10.1088/2041-8205/729/2/L27. arXiv:1102.4349 ADSCrossRefGoogle Scholar
  161. Sabra BM, Hamann F (2001) PG 1254+047: An Intrinsically X-Ray Weak, Heavily Absorbed Broad Absorption Line Quasar? ApJ 563:555–559. doi: 10.1086/324043 ADSCrossRefGoogle Scholar
  162. Schechter P (1976) An analytic expression for the luminosity function for galaxies. ApJ 203:297–306. doi: 10.1086/154079 ADSCrossRefGoogle Scholar
  163. Schmutz W (1997) Photon loss from the helium Ly\(\alpha \) line - the key to the acceleration of Wolf-Rayet winds. A&A 321:268–287ADSGoogle Scholar
  164. Shaw AW, Gandhi P, Altamirano D, Uttley P, Tomsick JA, Charles PA, Fürst F, Rahoui F, Walton DJ (2016) A low-luminosity soft state in the short-period black hole X-ray binary Swift J1753.5-0127. MNRAS 458:1636–1644. doi: 10.1093/mnras/stw417. arXiv:1602.05816
  165. Shaw AW, Charles PA, Bird AJ, Cornelisse R, Casares J, Lewis F, Muñoz-Darias T, Russell DM, Zurita C (2013) A 420-day X-ray/optical modulation and extended X-ray dips in the short-period transient Swift J1753.5-0127. MNRAS 433:740–745. doi: 10.1093/mnras/stt763. arXiv:1303.6308 ADSCrossRefGoogle Scholar
  166. Shlosman I, Vitello P (1993) Winds from accretion disks - Ultraviolet line formation in cataclysmic variables. ApJ 409:372–386. doi: 10.1086/172670 ADSCrossRefGoogle Scholar
  167. Silk J, Rees MJ (1998) Quasars and galaxy formation. A&A 331:L1–L4, arXiv:arXiv:astro-ph/9801013
  168. Silva C, Uttley P, Costantini E (2015) Timing the warm absorber in NGC4051. In: The Extremes of Black Hole Accretion, p 63Google Scholar
  169. Sim SA, Drew JE, Long KS (2005) Two-dimensional Monte Carlo simulations of HI line formation in massive young stellar object disc winds. MNRAS 363:615–627. doi: 10.1111/j.1365-2966.2005.09472.x. arXiv:arXiv:astro-ph/0508103
  170. Sim SA, Long KS, Miller L, Turner TJ (2008) Multidimensional modelling of X-ray spectra for AGN accretion disc outflows. MNRAS 388:611–624. doi: 10.1111/j.1365-2966.2008.13466.x. arXiv:0805.2251 ADSCrossRefGoogle Scholar
  171. Sim SA, Miller L, Long KS, Turner TJ, Reeves JN (2010a) Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - II. MNRAS 404:1369–1384. doi: 10.1111/j.1365-2966.2010.16396.x. arXiv:1002.0544
  172. Sim SA, Proga D, Miller L, Long KS, Turner TJ (2010b) Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - III. MNRAS 408:1396–1408. doi: 10.1111/j.1365-2966.2010.17215.x. arXiv:1006.3449
  173. Simon LE, Hamann F (2010) The origins of a rich absorption line complex in a quasar at redshift 3.45. MNRAS 409:269–283. doi: 10.1111/j.1365-2966.2010.17306.x. arXiv:1007.2017 ADSCrossRefGoogle Scholar
  174. Sluse D, Hutsemékers D, Anguita T, Braibant L, Riaud P (2015) Evidence for two spatially separated UV continuum emitting regions in the Cloverleaf broad absorption line quasar. ArXiv e-prints arXiv:1508.05394
  175. Soleri P, Muñoz-Darias T, Motta S, Belloni T, Casella P, Méndez M, Altamirano D, Linares M, Wijnands R, Fender R, van der Klis M (2013) A complex state transition from the black hole candidate Swift J1753.5-0127. MNRAS 429:1244–1257. doi: 10.1093/mnras/sts405. arXiv:1211.3537 ADSCrossRefGoogle Scholar
  176. Somerville RS, Primack JR, Faber SM (2001) The nature of high-redshift galaxies. MNRAS 320:504–528. doi: 10.1046/j.1365-8711.2001.03975.x. arXiv:astro-ph/9806228 ADSCrossRefGoogle Scholar
  177. Springel V, Di Matteo T, Hernquist L (2005) Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies. ApJ Letters 620:L79–L82. doi: 10.1086/428772. arXiv:astro-ph/0409436 ADSCrossRefGoogle Scholar
  178. Stalin CS, Srianand R, Petitjean P (2011) X-ray and optical properties of broad absorption line quasars in the Canada-France-Hawaii Telescope Legacy Survey. MNRAS 413:1013–1023. doi: 10.1111/j.1365-2966.2010.18190.x. arXiv:1012.2425 ADSCrossRefGoogle Scholar
  179. Strateva I, Ivezić Ž, Knapp GR, Narayanan VK, Strauss MA, Gunn JE, Lupton RH, Schlegel D, Bahcall NA, Brinkmann J, Brunner RJ, Budavári T, Csabai I, Castander FJ, Doi M, Fukugita M, Győry Z, Hamabe M, Hennessy G, Ichikawa T, Kunszt PZ, Lamb DQ, McKay TA, Okamura S, Racusin J, Sekiguchi M, Schneider DP, Shimasaku K, York D (2001) Color Separation of Galaxy Types in the Sloan Digital Sky Survey Imaging Data. AJ 122:1861–1874. doi: 10.1086/323301. arXiv:astro-ph/0107201
  180. Surdej J, Hutsemekers D (1987) Geometry of the mass-outflows around broad absorption line QSOs and formation of the complex Ly-alpha + N V line profile. A&A 177:42–50ADSGoogle Scholar
  181. Šurlan B, Hamann WR, Kubát J, Oskinova LM, Feldmeier A (2012) Three-dimensional radiative transfer in clumped hot star winds. I. Influence of clumping on the resonance line formation. A&A 541:A37. doi: 10.1051/0004-6361/201118590. arXiv:1202.4787
  182. Tanaka Y, Ueda Y, Boller T (2003) ASCA observation of a dip of GRO J1655–40: evidence for partial covering and its implication. MNRAS 338:L1–L6. doi: 10.1046/j.1365-8711.2003.06110.x ADSCrossRefGoogle Scholar
  183. Tombesi F, Cappi M, Reeves JN, Palumbo GGC, Yaqoob T, Braito V, Dadina M (2010) Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. A&A 521:A57. doi: 10.1051/0004-6361/200913440. arXiv:1006.2858
  184. Tombesi F, Meléndez M, Veilleux S, Reeves JN, González-Alfonso E, Reynolds CS (2015) Wind from the black-hole accretion disk driving a molecular outflow in an active galaxy. Nature 519:436–438. doi: 10.1038/nature14261. arXiv:1501.07664
  185. Trump JR, Hall PB, Reichard TA, Richards GT, Schneider DP, Vanden Berk DE, Knapp GR, Anderson SF, Fan X, Brinkman J, Kleinman SJ, Nitta A (2006) A Catalog of Broad Absorption Line Quasars from the Sloan Digital Sky Survey Third Data Release. ApJs 165:1–18. doi: 10.1086/503834. arXiv:astro-ph/0603070 ADSCrossRefGoogle Scholar
  186. Ueda Y, Inoue H, Tanaka Y, Ebisawa K, Nagase F, Kotani T, Gehrels N (1998) Detection of Absorption-Line Features in the X-Ray Spectra of the Galactic Superluminal Source GRO J1655–40. ApJ 492:782–787. doi: 10.1086/305063 ADSCrossRefGoogle Scholar
  187. Ustyugova GV, Koldoba AV, Romanova MM, Chechetkin VM, Lovelace RVE (1999) Magnetocentrifugally Driven Winds: Comparison of MHD Simulations with Theory. ApJ 516:221–235. doi: 10.1086/307093. arXiv:astro-ph/9812284 ADSzbMATHCrossRefGoogle Scholar
  188. van der Hooft F, Heemskerk MHM, Alberts F, van Paradijs J (1998) The quiescence optical light curve of Nova Scorpii 1994 (=GRO J1655–40). A&A 329:538–550 arXiv:astro-ph/9709151 ADSGoogle Scholar
  189. Voit GM, Weymann RJ, Korista KT (1993) Low-ionization broad absorption lines in quasars. ApJ 413:95–109. doi: 10.1086/172980 ADSCrossRefGoogle Scholar
  190. Walton DJ, Miller JM, Harrison FA, Fabian AC, Roberts TP, Middleton MJ, Reis RC (2013) X-Ray Outflows and Super-Eddington Accretion in the Ultraluminous X-Ray Source Holmberg IX X-1. ApJ Letters 773:L9. doi: 10.1088/2041-8205/773/1/L9. arXiv:1306.2317 ADSCrossRefGoogle Scholar
  191. Warner B (2003) Cataclysmic Variable Stars. DOI. doi: 10.1017/CB09780511586491 Google Scholar
  192. Weymann RJ, Morris SL, Foltz CB, Hewett PC (1991) Comparisons of the emission-line and continuum properties of broad absorption line and normal quasi-stellar objects. ApJ 373:23–53. doi: 10.1086/170020 ADSCrossRefGoogle Scholar
  193. Woods DT, Klein RI, Castor JI, McKee CF, Bell JB (1996) X-Ray-heated Coronae and Winds from Accretion Disks: Time-dependent Two-dimensional Hydrodynamics with Adaptive Mesh Refinement. ApJ 461:767. doi: 10.1086/177101 ADSCrossRefGoogle Scholar
  194. Yong SY, Webster RL, King AL (2016) Black Hole Mass Estimation: How Good is the Virial Estimate? PASA 33:e009. doi: 10.1017/pasa.2016.8. arXiv:1602.04672
  195. Zhou H, Wang T, Wang H, Wang J, Yuan W, Lu Y (2006) Polar Outflows in Six Broad Absorption Line Quasars. ApJ 639:716–723. doi: 10.1086/499768. arXiv:astro-ph/0510243 ADSCrossRefGoogle Scholar
  196. Zubovas K, King A (2013) BAL QSOs and Extreme UFOs: The Eddington Connection. ApJ 769:51. doi: 10.1088/0004-637X/769/1/51. arXiv:1304.1691 ADSCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations