Advertisement

Introduction

  • James MatthewsEmail author
Chapter
  • 236 Downloads
Part of the Springer Theses book series (Springer Theses)

Abstract

The release of gravitational potential energy as mass falls towards a compact object is the most efficient energetic process in the universe, even more efficient than nuclear fusion.

References

  1. Abramowicz M, Fragile PC (2013) Foundations of black hole accretion disk theory. Living Reviews in Relativity 16(1): doi: 10.1007/lrr-2013-1. http://www.livingreviews.org/lrr-2013-1
  2. Alexander DM, Bauer FE, Brandt WN, Daddi E, Hickox RC, Lehmer BD, Luo B, Xue YQ, Young M, Comastri A, Del Moro A, Fabian AC, Gilli R, Goulding AD, Mainieri V, Mullaney JR, Paolillo M, Rafferty DA, Schneider DP, Shemmer O, Vignali C (2011) X-Ray Spectral Constraints for z 2 Massive Galaxies: The Identification of Reflection-dominated Active Galactic Nuclei. ApJ 738:44. doi: 10.1088/0004-637X/738/1/44. arXiv:1106.1443 ADSCrossRefGoogle Scholar
  3. Allen JT, Hewett PC, Maddox N, Richards GT, Belokurov V (2011) A strong redshift dependence of the broad absorption line quasar fraction. MNRAS 410:860–884. doi: 10.1111/j.1365-2966.2010.17489.x. arXiv:1007.3991 ADSCrossRefGoogle Scholar
  4. Antonucci R (1988) Polarization of active galactic nuclei and quasars. In: Kafatos M (ed) Supermassive Black Holes, pp 26–38Google Scholar
  5. Antonucci R (2013) Astrophysics: Quasars still defy explanation. Nature 495:165–167. doi: 10.1038/495165a ADSCrossRefGoogle Scholar
  6. Antonucci RRJ, Miller JS (1985) Spectropolarimetry and the nature of NGC 1068. ApJ 297:621–632. doi: 10.1086/163559 ADSCrossRefGoogle Scholar
  7. Antonucci R, Geller R, Goodrich RW, Miller JS (1996) The Spectropolarimetric Test of the Quasar Emission Mechanism. ApJ 472:502. doi: 10.1086/178083 ADSCrossRefGoogle Scholar
  8. Arévalo P, Uttley P (2006) Investigating a fluctuating-accretion model for the spectral-timing properties of accreting black hole systems. MNRAS 367:801–814. doi: 10.1111/j.1365-2966.2006.09989.x. arXiv:astro-ph/0512394 ADSCrossRefGoogle Scholar
  9. Balbus SA, Hawley JF (1991) A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution. ApJ 376:214–233. doi: 10.1086/170270 Google Scholar
  10. Baldi RD, Capetti A, Robinson A, Laor A, Behar E (2016) Radio-loud Narrow Line Seyfert 1 under a different perspective: a revised black hole mass estimate from optical spectropolarimetry. MNRAS. doi: 10.1093/mnrasl/slw019. arXiv:1602.02783
  11. Bartlett E (2013) High mass X-ray binaries in the MilkyWay and beyond: a multiwavelength temporal and spectroscopic study. PhD thesis, University of SouthamptonGoogle Scholar
  12. Benz AO, Fuerst E, Kiplinger AL (1983) First detection of radio emission from a dwarf nova. Nature 302:45. doi: 10.1038/302045a0 ADSCrossRefGoogle Scholar
  13. Belloni T (ed) (2010) The Jet Paradigm. Lecture Notes in Physics, Berlin Springer Verlag 794: doi: 10.1007/978-3-540-76937-8
  14. Beuermann K, Stasiewski U, Schwope AD (1992) Phase-resolved spectroscopy of the novalike cataclysmic variable RW Sextantis. A&A 256:433–437ADSGoogle Scholar
  15. Blandford RD, Payne DG (1982) Hydromagnetic flows from accretion discs and the production of radio jets. MNRAS 199:883–903ADSzbMATHCrossRefGoogle Scholar
  16. Blandford RD, Znajek RL (1977) Electromagnetic extraction of energy from Kerr black holes. MNRAS 179:433–456. doi: 10.1093/mnras/179.3.433 ADSCrossRefGoogle Scholar
  17. Bondi H (1952) On spherically symmetrical accretion. MNRAS 112:195. doi: 10.1093/mnras/112.2.195 ADSMathSciNetCrossRefGoogle Scholar
  18. Bondi H, Hoyle F (1944) On the mechanism of accretion by stars. MNRAS 104:273. doi: 10.1093/mnras/104.5.273 ADSCrossRefGoogle Scholar
  19. Bonning EW, Cheng L, Shields GA, Salviander S, Gebhardt K (2007) Accretion Disk Temperatures and Continuum Colors in QSOs. ApJ 659:211–217. doi: 10.1086/510712. arXiv:astro-ph/0611263 ADSCrossRefGoogle Scholar
  20. Boroson TA, Green RF (1992) The emission-line properties of low-redshift quasi-stellar objects. ApJs 80:109–135. doi: 10.1086/191661 ADSCrossRefGoogle Scholar
  21. Capellupo DM, Netzer H, Lira P, Trakhtenbrot B, Mejía-Restrepo J (2015) Active galactic nuclei at z = 1.5 - I. Spectral energy distribution and accretion discs. MNRAS 446:3427–3446. doi: 10.1093/mnras/stu2266. arXiv:1410.8137 ADSCrossRefGoogle Scholar
  22. Cassinelli JP (1979) Stellar winds. ARAA 17:275–308. doi: 10.1146/annurev.aa.17.090179.001423 CrossRefGoogle Scholar
  23. Chartas G, Kochanek CS, Dai X, Poindexter S, Garmire G (2009) X-Ray Microlensing in RXJ1131-1231 and HE1104-1805. ApJ 693:174–185. doi: 10.1088/0004-637X/693/1/174. arXiv:0805.4492 ADSCrossRefGoogle Scholar
  24. Cohen RD, Puetter RC, Rudy RJ, Ake TB, Foltz CB (1986) Variability of Markarian 1018 - Seyfert 1.9 to Seyfert 1. ApJ 311:135–141. doi: 10.1086/164758 ADSCrossRefGoogle Scholar
  25. Connolly SD, McHardy IM, Skipper CJ, Emmanoulopoulos D (2016) Long-term X-Ray Spectral Variability in AGN from the Palomar sample observed by Swift. MNRAS. doi: 10.1093/mnras/stw878. arXiv:1604.03556
  26. Connolly SD, McHardy IM, Dwelly T (2014) Long-term wind-driven X-ray spectral variability of NGC 1365 with Swift. MNRAS 440:3503–3510. doi: 10.1093/mnras/stu546. arXiv:1403.4253 ADSCrossRefGoogle Scholar
  27. Coppejans DL, Körding EG, Miller-Jones JCA, Rupen MP, Knigge C, Sivakoff GR, Groot PJ (2015) Novalike cataclysmic variables are significant radio emitters. MNRAS 451:3801–3813. doi: 10.1093/mnras/stv1225. arXiv:1506.00003
  28. Cordova FA, Mason KO (1982) High-velocity winds from a dwarf nova during outburst. ApJ 260:716–721. doi: 10.1086/160291 ADSCrossRefGoogle Scholar
  29. Crenshaw DM, Rodriguez-Pascual PM, Penton SV, Edelson RA, Alloin D, Ayres TR, Clavel J, Horne K, Johnson WN, Kaspi S, Korista KT, Kriss GA, Krolik JH, Malkan MA, Maoz D, Netzer H, O’Brien PT, Peterson BM, Reichert GA, Shull JM, Ulrich MH, Wamsteker W, Warwick RS, Yaqoob T, Balonek TJ, Barr P, Bromage GE, Carini M, Carone TE, Cheng FZ, Chuvaev KK, Dietrich M, Doroshenko VT, Dultzin-Hacyan D, Filippenko AV, Gaskell CM, Glass IS, Goad MR, Hutchings J, Kazanas D, Kollatschny W, Koratkar AP, Laor A, Leighly K, Lyutyi VM, MacAlpine GM, Malkov YF, Martin PG, McCollum B, Merkulova NI, Metik L, Metlov VG, Miller HR, Morris SL, Oknyanskij VL, Penfold J, Perez E, Perola GC, Pike G, Pogge RW, Pronik I, Pronik VI, Ptak RL, Recondo-Gonzalez MC, Rodriguez-Espinoza JM, Rokaki EL, Roland J, Sadun AC, Salamanca I, Santos-Lleo M, Sergeev SG, Smith SM, Snijders MAJ, Sparke LS, Stirpe GM, Stoner RE, Sun WH, van Groningen E, Wagner RM, Wagner S, Wanders I, Welsh WF, Weymann RJ, Wilkes BJ, Zheng W (1996) Multiwavelength Observations of Short-Timescale Variability in NGC 4151. I. Ultraviolet Observations. ApJ 470:322. doi: 10.1086/177869. arXiv:astro-ph/9605079 Google Scholar
  30. Crummy J, Fabian AC, Gallo L, Ross RR (2006) An explanation for the soft X-ray excess in active galactic nuclei. MNRAS 365:1067–1081. doi: 10.1111/j.1365-2966.2005.09844.x. arXiv:astro-ph/0511457 ADSCrossRefGoogle Scholar
  31. Dabrowski Y, Fabian AC, Iwasawa K, Lasenby AN, Reynolds CS (1997) The profile and equivalent width of the X-ray iron emission line from a disc around a Kerr black hole. MNRAS 288:L11–L15. doi: 10.1093/mnras/288.1.L11 ADSCrossRefGoogle Scholar
  32. Dai X, Kochanek CS, Chartas G, Kozłowski S, Morgan CW, Garmire G, Agol E (2010) The Sizes of the X-ray and Optical Emission Regions of RXJ 1131–1231. ApJ 709:278–285. doi: 10.1088/0004-637X/709/1/278. arXiv:0906.4342 ADSCrossRefGoogle Scholar
  33. Davis SW, Woo JH, Blaes OM (2007) The UV Continuum of Quasars: Models and SDSS Spectral Slopes. ApJ 668:682–698. doi: 10.1086/521393. arXiv:0707.1456 ADSCrossRefGoogle Scholar
  34. Denney KD, De Rosa G, Croxall K, Gupta A, Bentz MC, Fausnaugh MM, Grier CJ, Martini P, Mathur S, Peterson BM, Pogge RW, Shappee BJ (2014) The Typecasting of Active Galactic Nuclei: Mrk 590 no Longer Fits the Role. ApJ 796:134. doi: 10.1088/0004-637X/796/2/134. arXiv:1404.4879 ADSCrossRefGoogle Scholar
  35. Dexter J, Agol E (2011) Quasar Accretion Disks are Strongly Inhomogeneous. ApJ Letters 727:L24. doi: 10.1088/2041-8205/727/1/L24. arXiv:1012.3169 ADSCrossRefGoogle Scholar
  36. Dhillon VS (1996) The Nova-like variables. In: Evans A, Wood JH (eds) IAU Colloq. 158: Cataclysmic Variables and Related Objects, Astrophysics and Space Science Library, vol 208, p 3, astro-ph/9509156Google Scholar
  37. Dhillon VS, Rutten RGM (1995) Spectropolarimetry of the nova-like variable V 1315 Aquilae. MNRAS 277:777–780 arXiv:astro-ph/9506111 ADSCrossRefGoogle Scholar
  38. Díaz Trigo M, Boirin L (2015) Accretion disc atmospheres and winds in low-mass X-ray binaries. arXiv:1510:03576
  39. Done C, Jin C (2015) The Mass and Spin of The Extreme Narrow Line Seyfert 1 Galaxy 1H0707-495 and Its Implications for The Trigger for Relativistic Jets. arXiv:1506:04547
  40. Echevarria J (1988) A statistical analysis of the emission line ratios in cataclysmic variables. MNRAS 233:513–527. doi: 10.1093/mnras/233.3.513 ADSCrossRefGoogle Scholar
  41. Edelson R, Gelbord JM, Horne K, McHardy IM, Peterson BM, Arévalo P, Breeveld AA, De Rosa G, Evans PA, Goad MR, Kriss GA, Brandt WN, Gehrels N, Grupe D, Kennea JA, Kochanek CS, Nousek JA, Papadakis I, Siegel M, Starkey D, Uttley P, Vaughan S, Young S, Barth AJ, Bentz MC, Brewer BJ, Crenshaw DM, Dalla Bontà E, De Lorenzo-Cáceres A, Denney KD, Dietrich M, Ely J, Fausnaugh MM, Grier CJ, Hall PB, Kaastra J, Kelly BC, Korista KT, Lira P, Mathur S, Netzer H, Pancoast A, Pei L, Pogge RW, Schimoia JS, Treu T, Vestergaard M, Villforth C, Yan H, Zu Y (2015) Space Telescope and Optical Reverberation Mapping Project. II. Swift and HST Reverberation Mapping of the Accretion Disk of NGC 5548. ApJ 806:129. doi: 10.1088/0004-637X/806/1/129. arXiv:1501.05951
  42. Edge DO, Shakeshaft JR, McAdam WB, Baldwin JE, Archer S (1959) A survey of radio sources at a frequency of 159 Mc/s. MmRA 68:37–60ADSGoogle Scholar
  43. Eggleton PP (1983) Approximations to the radii of Roche lobes. ApJ 268:368. doi: 10.1086/160960 ADSCrossRefGoogle Scholar
  44. Ehman JR, Dixon RS, Kraus JD (1970) The Ohio survey between declinations of 0 and 36 south. AJ 75:351–506. doi: 10.1086/110985
  45. Ekers JA (1969) The Parkes catalogue of radio sources, declination zone +20 to -90 . Australian Journal of Physics Astrophysical Supplement 7Google Scholar
  46. Elitzur M (2012) On the Unification of Active Galactic Nuclei. ApJ Letters 747:L33. doi: 10.1088/2041-8205/747/2/L33. arXiv:1202.1776 ADSCrossRefGoogle Scholar
  47. Elitzur M, Ho LC, Trump JR (2014) Evolution of broad-line emission from active galactic nuclei. MNRAS 438:3340–3351. doi: 10.1093/mnras/stt2445. arXiv:1312.4922 ADSCrossRefGoogle Scholar
  48. Elvis M (2000) A Structure for Quasars. ApJ 545:63–76. doi: 10.1086/317778. arXiv:arXiv:astro-ph/0008064
  49. Emmanoulopoulos D, Papadakis IE, McHardy IM, Arévalo P, Calvelo DE, Uttley P (2012) The ‘harder when brighter’ X-ray behaviour of the low-luminosity active galactic nucleus NGC 7213. MNRAS 424:1327–1334. doi: 10.1111/j.1365-2966.2012.21316.x. arXiv:1205.3524 ADSCrossRefGoogle Scholar
  50. Emmanoulopoulos D, Papadakis IE, Dovčiak M, McHardy IM (2014) General relativistic modelling of the negative reverberation X-ray time delays in AGN. MNRAS 439:3931–3950. doi: 10.1093/mnras/stu249. arXiv:1402.0899 ADSCrossRefGoogle Scholar
  51. Evans PA, Hellier C, Ramsay G, Cropper M (2004) Twisted accretion curtains in the intermediate polar FO Aquarii. MNRAS 349:715–721. doi: 10.1111/j.1365-2966.2004.07542.x. arXiv:astro-ph/0312379 ADSCrossRefGoogle Scholar
  52. Fabian AC (2012) Observational Evidence of Active Galactic Nuclei Feedback. ARAA 50:455–489. doi: 10.1146/annurev-astro-081811-125521. arXiv:1204.4114 ADSCrossRefGoogle Scholar
  53. Fabian AC, Nandra K, Reynolds CS, Brandt WN, Otani C, Tanaka Y, Inoue H, Iwasawa K (1995) On broad iron Kalpha lines in Seyfert 1 galaxies. MNRAS 277:L11–L15. doi: 10.1093/mnras/277.1.11L. arXiv:astro-ph/9507061 ADSGoogle Scholar
  54. Fath EA (1909) The spectra of some spiral nebulae and globular star clusters. Lick Observatory Bulletin 5:71–77. doi: 10.5479/ADS/bib/1909LicOB.5.71F ADSCrossRefGoogle Scholar
  55. Fender RP (2001) Powerful jets from black hole X-ray binaries in low/hard X-ray states. MNRAS 322:31–42. doi: 10.1046/j.1365-8711.2001.04080.x. arXiv:astro-ph/0008447 ADSCrossRefGoogle Scholar
  56. Fender RP, Belloni TM, Gallo E (2004) Towards a unified model for black hole X-ray binary jets. MNRAS 355:1105–1118. doi: 10.1111/j.1365-2966.2004.08384.x. arXiv:astro-ph/0409360 ADSCrossRefGoogle Scholar
  57. Fender RP, Gallo E, Russell D (2010) No evidence for black hole spin powering of jets in X-ray binaries. MNRAS 406:1425–1434. doi: 10.1111/j.1365-2966.2010.16754.x. arXiv:1003.5516 ADSGoogle Scholar
  58. Frank J, King A, Raine D (1992) Accretion power in astrophysicsGoogle Scholar
  59. Gallo E, Fender RP, Pooley GG (2003) A universal radio-X-ray correlation in low/hard state black hole binaries. MNRAS 344:60–72. doi: 10.1046/j.1365-8711.2003.06791.x. arXiv:astro-ph/0305231 ADSCrossRefGoogle Scholar
  60. Gandhi P, Terashima Y, Yamada S, Mushotzky RF, Ueda Y, Baumgartner WH, Alexander DM, Malzac J, Vaghmare K, Takahashi T, Done C (2013) Reflection-dominated Nuclear X-Ray Emission in the Early-type Galaxy ESO 565–G019. ApJ 773:51. doi: 10.1088/0004-637X/773/1/51. arXiv:1305.4901 ADSCrossRefGoogle Scholar
  61. Gandhi P, Hönig SF, Kishimoto M (2015) The Dust Sublimation Radius as an Outer Envelope to the Bulk of the Narrow Fe Kalpha Line Emission in Type 1 AGNs. ApJ 812:113. doi: 10.1088/0004-637X/812/2/113. arXiv:1502.02661
  62. Gardner E, Done C (2016) The UV/optical lags in NGC 5548: It’s not disc reprocessing and the soft X-ray excess is part of the solution. ArXiv e-prints 1603:09564Google Scholar
  63. Gierliński M, Done C (2004) Is the soft excess in active galactic nuclei real? MNRAS 349:L7–L11. doi: 10.1111/j.1365-2966.2004.07687.x. arXiv:astro-ph/0312271 ADSCrossRefGoogle Scholar
  64. Gierliński M, Done C (2006) Energy-dependent variability and the origin of the soft X-ray excess in active galactic nuclei. MNRAS 371:L16–L20. doi: 10.1111/j.1745-3933.2006.00199.x. arXiv:astro-ph/0605129 ADSCrossRefGoogle Scholar
  65. Green AR, McHardy IM, Lehto HJ (1993) On the nature of rapid X-ray variability in active galactic nuclei. MNRAS 265:664. doi: 10.1093/mnras/265.3.664 ADSCrossRefGoogle Scholar
  66. Greenstein JL, Oke JB (1982) RW Sextantis, a disk with a hot, high-velocity wind. ApJ 258:209–216. doi: 10.1086/160069 ADSCrossRefGoogle Scholar
  67. Groot PJ, Rutten RGM, van Paradijs J (2004) A spectrophotometric study of RW Trianguli. A&A 417:283–291. doi: 10.1051/0004-6361:20031771. arXiv:astro-ph/0401029 ADSCrossRefGoogle Scholar
  68. Gu M, Cao X (2009) The anticorrelation between the hard X-ray photon index and the Eddington ratio in low-luminosity active galactic nuclei. MNRAS 399:349–356. doi: 10.1111/j.1365-2966.2009.15277.x. arXiv:0906.3560 ADSCrossRefGoogle Scholar
  69. Haardt F, Maraschi L (1991) A two-phase model for the X-ray emission from Seyfert galaxies. ApJ Letters 380:L51–L54. doi: 10.1086/186171 ADSCrossRefGoogle Scholar
  70. Häring N, Rix HW (2004) On the Black Hole Mass-Bulge Mass Relation. ApJ Letters 604:L89–L92. doi: 10.1086/383567. arXiv:astro-ph/0402376 ADSCrossRefGoogle Scholar
  71. Hassall BJM (1985) A superoutburst of the dwarf nova EK Trianguli Australis. MNRAS 216:335–352ADSCrossRefGoogle Scholar
  72. Haug K (1987) Continuum distributions and line profiles of UX UMA-type novalike systems. AP&SS 130:91–102. doi: 10.1007/BF00654977 ADSCrossRefGoogle Scholar
  73. Hazard C, Mackey MB, Shimmins AJ (1963) Investigation of the Radio Source 3C 273 By The Method of Lunar Occultations. Nature 197:1037–1039. doi: 10.1038/1971037a0 ADSCrossRefGoogle Scholar
  74. Heap SR, Boggess A, Holm A, Klinglesmith DA, Sparks W, West D, Wu CC, Boksenberg A, Willis A, Wilson R, Macchetto F, Selvelli PO, Stickland D, Greenstein JL, Hutchings JB, Underhill AB, Viotti R, Whelan JAJ (1978) IUE observations of hot stars - HZ43, BD +75 deg 325, NGC 6826, SS Cygni, Eta Carinae. Nature 275:385–388. doi: 10.1038/275385a0 ADSCrossRefGoogle Scholar
  75. Heil LM, Vaughan S, Uttley P (2012) The ubiquity of the rms-flux relation in black hole X-ray binaries. MNRAS 422:2620–2631. doi: 10.1111/j.1365-2966.2012.20824.x. arXiv:1202.5877 ADSCrossRefGoogle Scholar
  76. Hessman FV, Robinson EL, Nather RE, Zhang EH (1984) Time-resolved spectroscopy of SS Cygni at minimum and maximum light. ApJ 286:747–759. doi: 10.1086/162651 ADSCrossRefGoogle Scholar
  77. Higginbottom N, Knigge C, Long KS, Sim SA, Matthews JH (2013) A simple disc wind model for broad absorption line quasars. MNRAS 436:1390–1407. doi: 10.1093/mnras/stt1658. arXiv:1308.5973 ADSCrossRefGoogle Scholar
  78. Hoare MG, Drew JE (1991) Boundary-layer temperatures in high accretion rate cataclysmic variables. MNRAS 249:452–459ADSCrossRefGoogle Scholar
  79. Hoare MG, Drew JE (1993) The ionization state of the winds from cataclysmic variables without classical boundary layers. MNRAS 260:647–662ADSCrossRefGoogle Scholar
  80. Hogg JD, Reynolds C (2015) Testing the Propagating Fluctuations Model with a Long. Global Accretion Disk Simulation. ArXiv e-prints 1512:05350Google Scholar
  81. Honeycutt RK, Schlegel EM, Kaitchuck RH (1986) Evidence for a bipolar wind in the cataclysmic variable PG 1012–029. ApJ 302:388–402. doi: 10.1086/163997 ADSCrossRefGoogle Scholar
  82. Hönig SF, Kishimoto M, Tristram KRW, Prieto MA, Gandhi P, Asmus D, Antonucci R, Burtscher L, Duschl WJ, Weigelt G (2013) Dust in the Polar Region as a Major Contributor to the Infrared Emission of Active Galactic Nuclei. ApJ 771:87. doi: 10.1088/0004-637X/771/2/87. arXiv:1306.4312 ADSCrossRefGoogle Scholar
  83. Horne K (1993) Eclipse Mapping of Accretion Disks: The First Decade, p 117Google Scholar
  84. Horne K, Marsh TR (1986) Emission line formation in accretion discs. MNRAS 218:761–773ADSCrossRefGoogle Scholar
  85. Hōshi R (1979) Accretion Model for Outbursts of Dwarf Nova. Progress of Theoretical Physics 61:1307–1319. doi: 10.1143/PTP.61.1307 ADSCrossRefGoogle Scholar
  86. Hoyle F, Lyttleton RA (1939) The effect of interstellar matter on climatic variation. Proceedings of the Cambridge Philosophical Society 35:405. doi: 10.1017/S0305004100021150 ADSCrossRefGoogle Scholar
  87. Idan I, Lasota JP, Hameury JM, Shaviv G (2010) Accretion-disc model spectra for dwarf-nova stars. A&A 519:A117. doi: 10.1051/0004-6361/200810896. arXiv:0809.0432 ADSCrossRefGoogle Scholar
  88. Iwasawa K, Fabian AC, Mushotzky RF, Brandt WN, Awaki H, Kunieda H (1996a) The broad iron K emission line in the Seyfert 2 galaxy IRAS 18325–5926. MNRAS 279:837–846. doi: 10.1093/mnras/279.3.837 ADSCrossRefGoogle Scholar
  89. Iwasawa K, Fabian AC, Reynolds CS, Nandra K, Otani C, Inoue H, Hayashida K, Brandt WN, Dotani T, Kunieda H, Matsuoka M, Tanaka Y (1996b) The variable iron K emission line in MCG-6-30-15. MNRAS 282:1038–1048. doi: 10.1093/mnras/282.3.1038. arXiv:astro-ph/9606103 ADSCrossRefGoogle Scholar
  90. Janiuk A, Czerny B, Madejski GM (2001) The Nature of the Emission Components in the Quasar/NLS1 PG 1211+143. ApJ 557:408–420. doi: 10.1086/321617. arXiv:astro-ph/0104352 ADSCrossRefGoogle Scholar
  91. Ju W, Stone JM, Zhu Z (2016) Global MHD Simulations of Accretion Disks in Cataclysmic Variables (CVs): I. The Importance of Spiral Shocks. ArXiv e-prints 1604.00715Google Scholar
  92. Kafka S, Honeycutt RK (2004) Detecting Outflows from Cataclysmic Variables in the Optical. AJ 128:2420–2429. doi: 10.1086/424618
  93. King A (2003) Black Holes, Galaxy Formation, and the M\(_{BH}\)-\(\sigma \) Relation. ApJ Letters 596:L27–L29. doi: 10.1086/379143. arXiv:astro-ph/0308342 ADSCrossRefGoogle Scholar
  94. Knigge C (1999) The effective temperature distribution of steady-state, mass-losing accretion discs. MNRAS 309:409–420. doi: 10.1046/j.1365-8711.1999.02839.x. arXiv:astro-ph/9906194 ADSCrossRefGoogle Scholar
  95. Knigge C, Long KS, Wade RA, Baptista R, Horne K, Hubeny I, Rutten RGM (1998a) Hubble Space Telescope Eclipse Observations of the Nova-like Cataclysmic Variable UX Ursae Majoris. ApJ 499:414–428. doi: 10.1086/305617. arXiv:astro-ph/9801206 ADSCrossRefGoogle Scholar
  96. Knigge C, Long KS, Wade RA, Baptista R, Horne K, Hubeny I, Rutten RGM (1998b) Hubble Space Telescope Eclipse Observations of the Nova-like Cataclysmic Variable UX Ursae Majoris. ApJ 499:414. doi: 10.1086/305617. arXiv:astro-ph/9801206 ADSCrossRefGoogle Scholar
  97. Knigge C, Scaringi S, Goad MR, Cottis CE (2008) The intrinsic fraction of broad-absorption line quasars. MNRAS 386:1426–1435. doi: 10.1111/j.1365-2966.2008.13081.x. arXiv:0802.3697 ADSCrossRefGoogle Scholar
  98. Knigge C, Baraffe I, Patterson J (2011) The Evolution of Cataclysmic Variables as Revealed by Their Donor Stars. APJS 194:28. doi: 10.1088/0067-0049/194/2/28. arXiv:1102.2440 ADSCrossRefGoogle Scholar
  99. Koratkar A, Blaes O (1999) The Ultraviolet and Optical Continuum Emission in Active Galactic Nuclei: The Status of Accretion Disks. PASP 111:1–30. doi: 10.1086/316294 ADSCrossRefGoogle Scholar
  100. Körding EG, Jester S, Fender R (2006) Accretion states and radio loudness in active galactic nuclei: analogies with X-ray binaries. MNRAS 372:1366–1378. doi: 10.1111/j.1365-2966.2006.10954.x. arXiv:astro-ph/0608628 ADSCrossRefGoogle Scholar
  101. Körding E, Rupen M, Knigge C, Fender R, Dhawan V, Templeton M, Muxlow T (2008) A Transient Radio Jet in an Erupting Dwarf Nova. Science 320:1318–1320. doi: 10.1126/science.1155492. arXiv:0806.1002
  102. Kotov O, Churazov E, Gilfanov M (2001) On the X-ray time-lags in the black hole candidates. MNRAS 327:799–807. doi: 10.1046/j.1365-8711.2001.04769.x. arXiv:astro-ph/0103115 ADSCrossRefGoogle Scholar
  103. Kraft RP, Mathews J, Greenstein JL (1962) Binary Stars among Cataclysmic Variables. II. Nova WZ Sagittae: a Possible Radiator of Gravitational Waves. ApJ 136:312–315. doi: 10.1086/147381 ADSCrossRefGoogle Scholar
  104. Krolik JH, Begelman MC (1986) The Dynamical State of the Obscuring Torus in Seyfert Galaxies. In: Bulletin of the American Astronomical Society, BAAS, vol 18, p 903Google Scholar
  105. Kuulkers E, Motta S, Kajava J, Homan J, et al (2015) The Astronomer’s Telegram 7647Google Scholar
  106. La Dous C (1989a) On the Balmer jump in dwarf novae during the outburst. MNRAS 238:935–943ADSCrossRefGoogle Scholar
  107. Laor A (1991) Line profiles from a disk around a rotating black hole. ApJ 376:90–94. doi: 10.1086/170257 ADSCrossRefGoogle Scholar
  108. Laor A, Davis SW (2014) Line-driven winds and the UV turnover in AGN accretion discs. MNRAS 438:3024–3038. doi: 10.1093/mnras/stt2408. arXiv:1312.3556 ADSCrossRefGoogle Scholar
  109. Lasota JP (2001) The disc instability model of dwarf novae and low-mass X-ray binary transients. NAR 45:449–508. doi: 10.1016/S1387-6473(01)00112-9. arXiv:astro-ph/0102072 CrossRefGoogle Scholar
  110. Liebert J, Stockman HS (1985) The AM Herculis magnetic variables. In: Lamb DQ, Patterson J (eds) Cataclysmic Variables and Low-Mass X-ray Binaries, Astrophysics and Space Science Library, vol 113, pp 151–177. doi: 10.1007/978-94-009-5319-2_20
  111. Long KS, Blair WP, Davidsen AF, Bowers CW, Dixon WVD, Durrance ST, Feldman PD, Henry RC, Kriss GA, Kruk JW, Moos HW, Vancura O, Ferguson HC, Kimble RA (1991) Spectroscopy of Z Camelopardalis in outburst with the Hopkins Ultraviolet Telescope. ApJ Letters 381:L25–L29. doi: 10.1086/186188 ADSCrossRefGoogle Scholar
  112. Long KS, Wade RA, Blair WP, Davidsen AF, Hubeny I (1994) Observations of the bright novalike variable IX Velorum with the Hopkins Ultraviolet Telescope. ApJ 426:704–715. doi: 10.1086/174107 ADSCrossRefGoogle Scholar
  113. Lusso E, Worseck G, Hennawi JF, Prochaska JX, Vignali C, Stern J, O’Meara JM (2015) The first ultraviolet quasar-stacked spectrum at z   2.4 from WFC3. MNRAS 449:4204–4220. doi: 10.1093/mnras/stv516. arXiv:1503.02075
  114. Lynden-Bell D (1969) Galactic Nuclei as Collapsed Old Quasars. Nature 223:690–694. doi: 10.1038/223690a0 ADSCrossRefGoogle Scholar
  115. Lyubarskii YE (1997) Flicker noise in accretion discs. MNRAS 292:679. doi: 10.1093/mnras/292.3.679 ADSCrossRefGoogle Scholar
  116. Madau P, Ghisellini G, Fabian AC (1994) The Unified Seyfert Scheme and the Origin of the Cosmic X-Ray Background. MNRAS 270:L17. doi: 10.1093/mnras/270.1.17L ADSCrossRefGoogle Scholar
  117. Magdziarz P, Blaes OM, Zdziarski AA, Johnson WN, Smith DA (1998) A spectral decomposition of the variable optical, ultraviolet and X-ray continuum of NGC 5548. MNRAS 301:179–192. doi: 10.1046/j.1365-8711.1998.02015.x ADSCrossRefGoogle Scholar
  118. Magorrian J, Tremaine S, Richstone D, Bender R, Bower G, Dressler A, Faber SM, Gebhardt K, Green R, Grillmair C, Kormendy J, Lauer T (1998) The Demography of Massive Dark Objects in Galaxy Centers. AJ 115:2285–2305. doi: 10.1086/300353. arXiv:astro-ph/9708072
  119. Mangham SW, Knigge C, Matthews JH, Long KS, Sim SA, Higginbottom N (2016) The reverberation signatures of rotating disk winds in AGN. in prepGoogle Scholar
  120. Marinucci A, Bianchi S, Matt G, Alexander DM, Baloković M, Bauer FE, Brandt WN, Gandhi P, Guainazzi M, Harrison FA, Iwasawa K, Koss M, Madsen KK, Nicastro F, Puccetti S, Ricci C, Stern D, Walton DJ (2016) NuSTAR catches the unveiling nucleus of NGC 1068. MNRAS 456:L94–L98. doi: 10.1093/mnrasl/slv178. arXiv:1511.03503
  121. Marscher AP (2006) Relativistic Jets in Active Galactic Nuclei. In: Hughes PA, Bregman JN (eds) Relativistic Jets: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts, American Institute of Physics Conference Series, vol 856, pp 1–22. doi: 10.1063/1.2356381
  122. Marsh TR, Horne K (1990) Emission-line mapping of the dwarf nova IP Pegasi in outburst and quiescence. ApJ 349:593–607. doi: 10.1086/168346 ADSCrossRefGoogle Scholar
  123. Marziani P, Sulentic JW, Zwitter T, Dultzin-Hacyan D, Calvani M (2001) Searching for the Physical Drivers of the Eigenvector 1 Correlation Space. ApJ 558:553–560. doi: 10.1086/322286. arXiv:astro-ph/0105343 ADSCrossRefGoogle Scholar
  124. Matt G, Guainazzi M, Maiolino R (2003) Changing look: from Compton-thick to Compton-thin, or the rebirth of fossil active galactic nuclei. MNRAS 342:422–426. doi: 10.1046/j.1365-8711.2003.06539.x. arXiv:astro-ph/0302328 ADSCrossRefGoogle Scholar
  125. Mauche CW (1996) X-ray and EUV Spectroscopy of the Boundary Layer Emission of Nonmagnetic Cataclysmic Variables. ArXiv Astrophysics e-prints astro-ph/9605125Google Scholar
  126. McHardy IM, Papadakis IE, Uttley P (1999) Temporal and spectral variability of AGN with RXTE. Nuclear Physics B Proceedings Supplements 69:509–514. doi: 10.1016/S0920-5632(98)00272-2 ADSCrossRefGoogle Scholar
  127. McHardy IM, Koerding E, Knigge C, Uttley P, Fender RP (2006) Active galactic nuclei as scaled-up Galactic black holes. Nature 444:730–732. doi: 10.1038/nature05389. arXiv:astro-ph/0612273 ADSCrossRefGoogle Scholar
  128. Merloni A, Heinz S, di Matteo T (2003) A Fundamental Plane of black hole activity. MNRAS 345:1057–1076. doi: 10.1046/j.1365-2966.2003.07017.x. arXiv:astro-ph/0305261 ADSCrossRefGoogle Scholar
  129. Meyer F, Meyer-Hofmeister E (1981) On the Elusive Cause of Cataclysmic Variable Outbursts. A&A 104:L10ADSGoogle Scholar
  130. Miller L, Turner TJ (2013) The Hard X-Ray Spectrum of NGC 1365: Scattered Light. Not Black Hole Spin. ApJ Letters 773:L5. doi: 10.1088/2041-8205/773/1/L5. arXiv:1303.4309 ADSGoogle Scholar
  131. Miller L, Turner TJ, Reeves JN (2008) An absorption origin for the X-ray spectral variability of MCG-6-30-15. A&A 483:437–452. doi: 10.1051/0004-6361:200809590. arXiv:0803.2680 ADSCrossRefGoogle Scholar
  132. Misra R, Kembhavi AK (1998) Broadening of the Iron Emission Line in MCG -6-30-15 by Comptonization. ApJ 499:205–208. doi: 10.1086/305645. arXiv:astro-ph/9712327 ADSCrossRefGoogle Scholar
  133. Mitsuda K, Inoue H, Nakamura N, Tanaka Y (1989) Luminosity-related changes of the energy spectrum of X1608–522. PASJ 41:97–111ADSGoogle Scholar
  134. Morgan CW, Kochanek CS, Morgan ND, Falco EE (2010) The Quasar Accretion Disk Size-Black Hole Mass Relation. ApJ 712:1129–1136. doi: 10.1088/0004-637X/712/2/1129. arXiv:0707.0305 ADSCrossRefGoogle Scholar
  135. Motta S, Beardmore A, Oates S, Sanna NPMKA, et al (2015). The Astronomer’s Telegram 7665Google Scholar
  136. Murray N, Chiang J, Grossman SA, Voit GM (1995) Accretion Disk Winds from Active Galactic Nuclei. ApJ 451:498. doi: 10.1086/176238 ADSCrossRefGoogle Scholar
  137. Nandra K, Pounds KA (1994) GINGA Observations of the X-Ray Spectra of Seyfert Galaxies. MNRAS 268:405. doi: 10.1093/mnras/268.2.405 ADSCrossRefGoogle Scholar
  138. Narayan R, McClintock JE (2012) Observational evidence for a correlation between jet power and black hole spin. MNRAS 419:L69–L73. doi: 10.1111/j.1745-3933.2011.01181.x. arXiv:1112.0569 ADSCrossRefGoogle Scholar
  139. Narayan R, Yi I (1994) Advection-dominated accretion: A self-similar solution. ApJ Letters 428:L13–L16. doi: 10.1086/187381. arXiv:astro-ph/9403052 ADSCrossRefGoogle Scholar
  140. Narayan R, Yi I (1995) Advection-dominated Accretion: Underfed Black Holes and Neutron Stars. ApJ 452:710. doi: 10.1086/176343. arXiv:astro-ph/9411059 ADSCrossRefGoogle Scholar
  141. Neugebauer G, Oke JB, Becklin EE, Matthews K (1979) Absolute spectral energy distribution of quasi-stellar objects from 0.3 to 10 microns. ApJ 230:79–94. doi: 10.1086/157063 ADSCrossRefGoogle Scholar
  142. Noebauer UM, Long KS, Sim SA, Knigge C (2010) The Geometry and Ionization Structure of the Wind in the Eclipsing Nova-like Variables RW Tri and UX UMa. ApJ 719:1932–1945. doi: 10.1088/0004-637X/719/2/1932. arXiv:1007.0209 ADSCrossRefGoogle Scholar
  143. Osaki Y (1974) An accretion model for the outbursts of U Geminorum stars. PASJ 26:429–436ADSGoogle Scholar
  144. Patterson J (1984) The evolution of cataclysmic and low-mass X-ray binaries. ApJs 54:443–493. doi: 10.1086/190940 ADSCrossRefGoogle Scholar
  145. Patterson J (1994) The DQ Herculis stars. PASP 106:209–238. doi: 10.1086/133375 Google Scholar
  146. Patterson J, Patino R, Thorstensen JR, Harvey D, Skillman DR, Ringwald FA (1996) Periods and Quasiperiods in the Cataclysmic Variable BZ Camelopardalis. AJ 111:2422. doi: 10.1086/117976
  147. Penrose R, Floyd RM (1971) Extraction of Rotational Energy from a Black Hole. Nature Physical Science 229:177–179. doi: 10.1038/physci229177a0 ADSCrossRefGoogle Scholar
  148. Perley RA, Dreher JW, Cowan JJ (1984) The jet and filaments in Cygnus A. ApJ Letters 285:L35–L38. doi: 10.1086/184360 ADSCrossRefGoogle Scholar
  149. Ponti G, Fender RP, Begelman MC, Dunn RJH, Neilsen J, Coriat M (2012) Ubiquitous equatorial accretion disc winds in black hole soft states. MNRAS 422:L11. doi: 10.1111/j.1745-3933.2012.01224.x. arXiv:1201.4172 ADSCrossRefGoogle Scholar
  150. Potash RI, Wardle JFC (1980) 4C 32.69 - A quasar with a radio jet. ApJ 239:42–49. doi: 10.1086/158086 ADSCrossRefGoogle Scholar
  151. Pounds KA, Reeves JN (2009) Quantifying the fast outflow in the luminous Seyfert galaxy PG1211+143. MNRAS 397:249–257. doi: 10.1111/j.1365-2966.2009.14971.x. arXiv:0811.3108 ADSCrossRefGoogle Scholar
  152. Pounds KA, Nandra K, Stewart GC, Leighly K (1989) Iron features in the X-ray spectra of three Seyfert galaxies. MNRAS 240:769–783. doi: 10.1093/mnras/240.4.769 ADSCrossRefGoogle Scholar
  153. Pringle JE (1981) Accretion discs in astrophysics. ARAA 19:137–162. doi: 10.1146/annurev.aa.19.090181.001033 Google Scholar
  154. Puccetti S, Fiore F, Risaliti G, Capalbi M, Elvis M, Nicastro F (2007) Rapid N\(_{H}\) changes in NGC 4151. MNRAS 377:607–616. doi: 10.1111/j.1365-2966.2007.11634.x. arXiv:astro-ph/0612021 ADSCrossRefGoogle Scholar
  155. Reeves JN, O’Brien PT, Ward MJ (2003) A Massive X-Ray Outflow from the Quasar PDS 456. ApJ Letters 593:L65–L68. doi: 10.1086/378218. arXiv:astro-ph/0307127 ADSCrossRefGoogle Scholar
  156. Reynolds CS (1999) Compton Reflection and Iron Fluorescence in Active Galactic Nuclei and Galactic Black Hole Candidates. In: Poutanen J, Svensson R (eds) High Energy Processes in Accreting Black Holes, Astronomical Society of the Pacific Conference Series, vol 161, p 178, astro-ph/9810018Google Scholar
  157. Ringwald FA, Naylor T (1998) High-speed optical spectroscopy of a cataclysmic variable wind - BZ Camelopardalis. AJ 115:286. doi: 10.1086/300192. arXiv:astro-ph/9710021
  158. Risaliti G, Elvis M, Nicastro F (2002) Ubiquitous Variability of X-Ray-absorbing Column Densities in Seyfert 2 Galaxies. ApJ 571:234–246. doi: 10.1086/324146. arXiv:astro-ph/0107510 ADSCrossRefGoogle Scholar
  159. Risaliti G, Elvis M, Fabbiano G, Baldi A, Zezas A, Salvati M (2007) Occultation Measurement of the Size of the X-Ray-emitting Region in the Active Galactic Nucleus of NGC 1365. ApJ Letters 659:L111–L114. doi: 10.1086/517884. arXiv:astro-ph/0703173 ADSCrossRefGoogle Scholar
  160. Ross RR, Fabian AC (2005) A comprehensive range of X-ray ionized-reflection models. MNRAS 358:211–216. doi: 10.1111/j.1365-2966.2005.08797.x. arXiv:astro-ph/0501116 ADSCrossRefGoogle Scholar
  161. Rottenberg JA (1952) Theoretical line profiles for stars of P Cygni type. MNRAS 112:125. doi: 10.1093/mnras/112.2.125 ADSCrossRefGoogle Scholar
  162. Rutten RGM, van Paradijs J, Tinbergen J (1992) Reconstruction of the accretion disk in six cataclysmic variable stars. A&A 260:213–226ADSGoogle Scholar
  163. Scaringi S, Körding E, Uttley P, Knigge C, Groot PJ, Still M (2012) The universal nature of accretion-induced variability: the rms-flux relation in an accreting white dwarf. MNRAS 421:2854–2860. doi: 10.1111/j.1365-2966.2012.20512.x. arXiv:1201.0759 ADSCrossRefGoogle Scholar
  164. Scaringi S, Maccarone TJ, Koerding E, Knigge C, Vaughan S, Marsh TR, Aranzana E, Dhillon V, Barros SCC (2015) Accretion-induced variability links young stellar objects, white dwarfs, and black holes. ArXiv e-prints 1510:02471Google Scholar
  165. Schmidt M (1963) 3C 273: A Star-Like Object with Large Red-Shift. Nature 197:1040. doi: 10.1038/1971040a0 ADSCrossRefGoogle Scholar
  166. Schmidt M (1965a) Large Redshifts of Five Quasi-Stellar Sources. ApJ 141:1295. doi: 10.1086/148217 ADSCrossRefGoogle Scholar
  167. Schmidt M (1965b) Optical Spectra and Redshifts of 31 Radio Galaxies. ApJ 141:1. doi: 10.1086/148085 ADSCrossRefGoogle Scholar
  168. Setti G, Woltjer L (1989) Active Galactic Nuclei and the spectrum of the X-ray background. A&A 224:L21–L23ADSGoogle Scholar
  169. Seyfert CK (1943) Nuclear Emission in Spiral Nebulae. ApJ 97:28. doi: 10.1086/144488 Google Scholar
  170. Shakura NI, Sunyaev RA (1973) Black holes in binary systems. Observational appearance. A&A 24:337–355Google Scholar
  171. Shankar F, Calderone G, Knigge C, Matthews J, Buckland R, Hryniewicz K, Sivakoff G, Dai X, Richardson K, Riley J, Gray J, La Franca F, Altamirano D, Croston J, Gandhi P, Hönig S, McHardy I, Middleton M (2016) The Optical-UV Emissivity of Quasars: Dependence on Black Hole Mass and Radio Loudness. ApJ Letters 818:L1. doi: 10.3847/2041-8205/818/1/L1. arXiv:1601.02021
  172. Shaviv G, Wehrse R (1991) Continuous energy distributions of accretion discs. A&A 251:117–132ADSzbMATHGoogle Scholar
  173. Shen Y, Ho LC (2014) The diversity of quasars unified by accretion and orientation. Nature 513:210–213. doi: 10.1038/nature13712. arXiv:1409.2887 ADSCrossRefGoogle Scholar
  174. Shi Y, Rieke GH, Smith P, Rigby J, Hines D, Donley J, Schmidt G, Diamond-Stanic AM (2010) Unobscured Type 2 Active Galactic Nuclei. ApJ 714:115–129. doi: 10.1088/0004-637X/714/1/115. arXiv:1004.2077 ADSCrossRefGoogle Scholar
  175. Silk J (1998) Rees MJ 331:L1–L4 arXiv:astro-ph/9801013 Google Scholar
  176. Sim SA, Miller L, Long KS, Turner TJ, Reeves JN (2010) Multidimensional modelling of X-ray spectra for AGN accretion disc outflows - II. MNRAS 404:1369–1384. doi: 10.1111/j.1365-2966.2010.16396.x. arXiv:1002.0544
  177. Smak J (1981) On the Emission Lines from Rotating Gaseous Disks. ACTAA 31:395Google Scholar
  178. Sobolewska MA, Siemiginowska A, Gierliński M (2011) Simulated spectral states of active galactic nuclei and observational predictions. MNRAS 413:2259–2268. doi: 10.1111/j.1365-2966.2011.18302.x. arXiv:1102.0798 ADSCrossRefGoogle Scholar
  179. Springel V, Di Matteo T, Hernquist L (2005) Black Holes in Galaxy Mergers: The Formation of Red Elliptical Galaxies. ApJ Letters 620:L79–L82. doi: 10.1086/428772. arXiv:astro-ph/0409436 ADSCrossRefGoogle Scholar
  180. Spruit HC (1996) Magnetohydrodynamic jets and winds from accretion disks. In: Wijers RAMJ, Davies MB, Tout CA (eds) NATO Advanced Science Institutes (ASI) Series C, NATO Advanced Science Institutes (ASI) Series C, vol 477, pp 249–286Google Scholar
  181. Stockman HS, Angel JRP, Miley GK (1979) Alignment of the optical polarization with the radio structure of QSOs. ApJ Letters 227:L55–L58. doi: 10.1086/182866 ADSCrossRefGoogle Scholar
  182. Struve O (1935) The Spectrum of P Cygni. ApJ 81:66. doi: 10.1086/143617
  183. Suleimanov V, Hertfelder M, Werner K, Kley W (2014) Modeling the EUV spectra of optically thick boundary layers of dwarf novae in outburst. ArXiv e-prints 1408:4369ADSGoogle Scholar
  184. Sulentic JW, Zwitter T, Marziani P, Dultzin-Hacyan D (2000) Eigenvector 1: An Optimal Correlation Space for Active Galactic Nuclei. ApJ Letters 536:L5–L9. doi: 10.1086/312717. arXiv:astro-ph/0005177 ADSCrossRefGoogle Scholar
  185. Thorne KS (1974) Disk-Accretion onto a Black Hole. II. Evolution of the Hole. ApJ 191:507–520. doi: 10.1086/152991 Google Scholar
  186. Tohline JE, Osterbrock DE (1976) Variation of the spectrum of the Seyfert galaxy NGC 7603. ApJ Letters 210:L117–L120. doi: 10.1086/182317 ADSCrossRefGoogle Scholar
  187. Tombesi F, Cappi M, Reeves JN, Palumbo GGC, Yaqoob T, Braito V, Dadina M (2010) Evidence for ultra-fast outflows in radio-quiet AGNs. I. Detection and statistical incidence of Fe K-shell absorption lines. A&A 521:A57. doi: 10.1051/0004-6361/200913440. arXiv:1006.2858
  188. Tran HD (2001) Hidden Broad-Line Seyfert 2 Galaxies in the CFA and 12 \(\mu \)M Samples. ApJ Letters 554:L19–L23. doi: 10.1086/320926. arXiv:astro-ph/0105462 ADSCrossRefGoogle Scholar
  189. Urry CM, Padovani P (1995) Unified Schemes for Radio-Loud Active Galactic Nuclei. PASP 107:803. doi: 10.1086/133630. arXiv:astro-ph/9506063 ADSCrossRefGoogle Scholar
  190. Uttley P, McHardy IM (2001) The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies. MNRAS 323:L26–L30. doi: 10.1046/j.1365-8711.2001.04496.x. arXiv:astro-ph/0103367 ADSCrossRefGoogle Scholar
  191. Uttley P, McHardy IM, Vaughan S (2005) Non-linear X-ray variability in X-ray binaries and active galaxies. MNRAS 359:345–362. doi: 10.1111/j.1365-2966.2005.08886.x. arXiv:astro-ph/0502112 ADSCrossRefGoogle Scholar
  192. Uttley P, Cackett EM, Fabian AC, Kara E, Wilkins DR (2014) X-ray reverberation around accreting black holes. AAPR 22:72. doi: 10.1007/s00159-014-0072-0. arXiv:1405.6575 ADSGoogle Scholar
  193. Van de Sande M, Scaringi S, Knigge C (2015) The rms-flux relation in accreting white dwarfs: another nova-like variable and the first dwarf nova. MNRAS 448:2430–2437. doi: 10.1093/mnras/stv157. arXiv:1501.05295
  194. Wade RA (1984) A double grid of accretion disc model spectra for cataclysmic variable stars. MNRAS 208:381–398ADSCrossRefGoogle Scholar
  195. Wade RA (1988) A test of synthetic accretion disk spectra using ultraviolet flux distributions of novalike variables. ApJ 335:394–405. doi: 10.1086/166934 ADSCrossRefGoogle Scholar
  196. Wang B, Han Z (2012) Progenitors of type Ia supernovae. NAR 56:122–141. doi: 10.1016/j.newar.2012.04.001. arXiv:1204.1155 Google Scholar
  197. Warner B (2003) Cataclysmic Variable Stars. DOI. doi: 10.1017/CB09780511586491 Google Scholar
  198. Weymann RJ, Morris SL, Foltz CB, Hewett PC (1991) Comparisons of the emission-line and continuum properties of broad absorption line and normal quasi-stellar objects. ApJ 373:23–53. doi: 10.1086/170020 ADSCrossRefGoogle Scholar
  199. White NE, Stella L, Parmar AN (1988) The X-ray spectral properties of accretion discs in X-ray binaries. ApJ 324:363–378. doi: 10.1086/165901 ADSCrossRefGoogle Scholar
  200. Woltjer L (1959) Emission Nuclei in Galaxies. ApJ 130:38. doi: 10.1086/146694 MathSciNetGoogle Scholar
  201. Zakamska NL, Strauss MA, Krolik JH, Collinge MJ, Hall PB, Hao L, Heckman TM, Ivezić Ž, Richards GT, Schlegel DJ, Schneider DP, Strateva I, Vanden Berk DE, Anderson SF, Brinkmann J (2003) Candidate Type II Quasars from the Sloan Digital Sky Survey. I. Selection and Optical Properties of a Sample at 0.3<Z<0.83. AJ 126:2125–2144. doi: 10.1086/378610. arXiv:astro-ph/0309551
  202. Zanstra H (1929) Luminosity of Planetary Nebulae and Stellar Temperatures. Publications of the Dominion Astrophysical Observatory Victoria 4:209ADSGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations