Skip to main content

Dietary Patterns and Whole Plant Foods in Type 2 Diabetes Prevention and Management

  • Chapter
  • First Online:
  • 1012 Accesses

Part of the book series: Nutrition and Health ((NH))

Abstract

A healthy lifestyle including habitual intake of a high quality dietary pattern, regular physical activity, and weight control are key components of type 2 diabetes (diabetes) prevention and management. Prospective cohort studies show that high quality dietary patterns including the Alternative Healthy Eating Index score have a significant inverse association with diabetes risk, and Western dietary patterns have a positive association with risk. Higher adherence to the Mediterranean diet (MedDiet) is associated with a 19–23% reduced risk of developing diabetes, while the results of randomized controlled trials (RCTs) show that the MedDiet can reduce risk of diabetes by 30% and can reduce glycosylated hemoglobin (HbA1c) levels by 0.30–0.47% in people with diabetes. Other healthy dietary patterns which are effective in reducing diabetes risk and in management of diabetics’ health are the Dietary Approaches to Stop Hypertension (DASH), vegan and the healthy Nordic food index diets. Prospective cohort studies show that whole (minimally processed) plant foods including whole-grains, fruits, vegetables, dietary pulses, and nuts and flaxseed are significantly associated with lower risk of diabetes. For whole grains, 3 servings/day reduced diabetes risk by 23% and of the whole-grains oats and oat bran are the most effective in managing glycemic control in people with diabetes. For fruits and vegetables, higher intake of fruits, especially berries, and green leafy vegetables, yellow vegetables, non-starchy root and cruciferous vegetables are particularly effective in lowering diabetes risk. Three weekly servings of French fries significantly increase diabetes risk by 41% compared to only 5% for other forms of potatoes (baked, boiled or mashed). Higher intake of sugar sweetened fruit juice is significantly associated with increased diabetes risk by 28%, while higher intake of 100% fruit juice is not associated with diabetes risk. Higher intake of dietary pulses, peanuts, tree nuts and flaxseed are also associated with lower diabetes risk. Healthy dietary patterns and specific whole foods beneficially affect glycemic and cardiometabolic risk factors, which are important for preventing and managing diabetes, by helping to control body weight, visceral fat, glucose-insulin homeostasis, oxidative stress, inflammation, and endothelial health, lipoprotein concentrations, and blood pressure.

This is a preview of subscription content, log in via an institution.

References

  1. Asif M. The prevention and control of type-2 diabetes by changing lifestyle and dietary pattern. J Educ Health Promot. 2014;3:1. https://doi.org/10.4103/2277-9531.127541.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Zimmer PZ. Diabetes and its driver: the largest epidemic in human history? Clin Diabetes Endrocrinology. 2017;3:1.

    Google Scholar 

  3. Zucker I, Shohat T, Dankner R, Chodick G. New onset in adulthood is associated with substantial risk for mortality at all ages: a population based historical cohort study with a decade-long follow-up. Cardiovasc Diabetol. 2017;16:105.

    Google Scholar 

  4. Ley SH, Hamdy O, Mahan V, Hu FB. Prevention and management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tabák AG, Herder C, Rathmann W, et al. Prediabetes: a high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Salas-Salvado J, Martinez-Gonzalez MA, Bullo M, Ros E. The role of diet in the prevention of type 2 diabetes. Nutr Metab Cardiovasc Dis. 2011;21:32–48.

    Article  CAS  Google Scholar 

  7. Jannasch F, Kroger J, Schulze MB. Dietary patterns and type 2 diabetes: a systematic literature review and meta-analysis of prospective studies. J Nutr. 2017;147:1174–82.

    Google Scholar 

  8. Tuomilehto J, Linstrom J, Eriksson JG, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  CAS  PubMed  Google Scholar 

  9. Nield L, Summerbell CD, Hooper L, et al. Dietary advice for the prevention of type 2 diabetes mellitus in adults. Cochrane Database Syst Rev. 2008;(3). Art. No.: CD005102. https://doi.org/10.1002/14651858.CD005102.pub2.

  10. Micha R, Pehalvo JL, Cudhea F, et al. Association between dietary factors and mortality from heart disease, stroke and type 2 diabetes in the United States. JAMA. 2017;317(9):912–24. https://doi.org/10.1001/jama.2017.0947.

    Article  PubMed  Google Scholar 

  11. Dietary Guidelines Advisory Committee (DGAC). Scientific report. Advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 2: Dietary patterns, foods and nutrients and health outcomes. 2015;1–35.

    Google Scholar 

  12. Evert AB, Boucher JL, Cypress M, et al. Nutrition therapy recommendations for the management of adults with diabetes. Diabetes Care. 2014;37(suppl 1):S120–47.

    Article  PubMed  Google Scholar 

  13. Ley SH, Korat A, Sun Q, et al. Contribution of the Nurses’ Health Studies to the uncovering risk factors for type 2 diabetes: diet, Lifestyle, biomarkers, and genetics. Am J Public Health. 2016;106(9):1624–30. https://doi.org/10.2105/AJPH.2016.303314.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Maghsoudi Z, Azadbakht L. How dietary patterns could have a role in prevention, progression, or management of diabetes mellitus? Review on the current evidence. J Res Med Sci. 2012;17(7):694–709.

    PubMed  PubMed Central  Google Scholar 

  15. Schwingshackl L, Hoffmann G, Lampousi A-M, et al. Food groups and risk of type 2 diabetes mellitus: a systematic review and meta-analysis of prospective studies. Eur J Epidemiol. 2017;32(5):363–75. https://doi.org/10.1007/s10654-0246-y.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ley SH, Pan A, Li Y, et al. Changes in overall diet quality and subsequent type 2 diabetes risk: three US prospective cohorts. Diabetes Care. 2016;39:2011–8. https://doi.org/10.2337/dc16-0574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Satija A, Bhupathiraju SN, Rimm EB, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13(6):e1002039. https://doi.org/10.1371/journal.pmed.1002039.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Maghsoudi Z, Ghiasvand R, Salehi-Abargouei A. Empirically derived dietary patterns and incident type 2 diabetes mellitus: a systematic review and meta-analysis on prospective observational studies. Public Health Nutr. 2015;19(2):230–41.

    Article  PubMed  Google Scholar 

  19. McEvoy CT, Cardwell CR, Woodside JV, et al. Posteriori dietary patterns are related to risk of type 2 diabetes: findings from a systematic review and meta-analysis. J Acad Nutr Diet. 2014;114:1759–75.

    Article  PubMed  Google Scholar 

  20. Alhazmi A, Stojanovski E, McEvoy M, Garg ML. The association between dietary patterns and type 2 diabetes: a systematic review and meta-analysis of cohort studies. J Human Nutr Dietetics. 2014;27:251–60.

    Google Scholar 

  21. Exposito K, Chiodini P, Maiorino MI, et al. Which diet for the prevention of type 2 diabetes? A meta-analysis of prospective studies. Endocrine. 2014;47(1):107–16.

    Article  CAS  Google Scholar 

  22. Esposito K, Kastorini CM, Panagiotakos DB, Giugliano D. Prevention of type 2 diabetes by dietary patterns: a systematic review of prospective studies and meta-analysis. Metab Syndr Relat Disord. 2010;8(6):471–6.

    Article  PubMed  Google Scholar 

  23. Doostvandi T, Bahadoran Z, Mozaffari-Khosravi H, et al. Food intake patterns are associated with the risk of impaired glucose and insulin homeostasis: a prospective approach in the Tehran Lipid and Glucose Study. Public Health Nutr. 2016;19(13):2467–74. https://doi.org/10.1017/S1368980016000616.

    Article  PubMed  Google Scholar 

  24. Cespedes FM, Hu FB, Tinker L, et al. Multiple healthful dietary patterns and type 2 diabetes in the Women’s Health Initiative. Am J Epidemiol. 2016;183(7):622–33.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hong X, Xu F, Wang Z, et al. Dietary patterns and the incidence of hyperglyacemia in China. Public Health Nutr. 2015;19(1):131–41.

    Article  PubMed  Google Scholar 

  26. Kröger J, Schulze MB, Romaguera D, et al. Adherence to predefined dietary patterns and incident type 2 diabetes in European populations: EPIC-InterAct Study. Diabetologia. 2014;57:321–33.

    Article  CAS  Google Scholar 

  27. Alhazmi A, Stojanovski E, McEvoy M, et al. Diet quality score is a predictor of type 2 diabetes risk in women: The Australian Longitudinal Study on Women’s Health. Br J Nutr. 2014; 112:945–51.

    Google Scholar 

  28. Gopinath B, Rochtchina E, Flood VM, Mitchell P. Diet quality is prospectively associated with incident impaired fasting glucose in older adults. Diabet Med. 2013;30(5):557–62.

    Article  CAS  PubMed  Google Scholar 

  29. de Koning L, Chiuve SE, Fung TT, et al. Diet-quality scores and the risk of type 2 diabetes in men. Diabetes Care. 2011;34:1150–6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fung TT, McCullough M, van Dam RM, Hu FB. A prospective study of overall diet quality and risk of type 2 diabetes in women. Diabetes Care. 2007;30(7):1753–7.

    Article  PubMed  Google Scholar 

  31. Kim Y, Keogh JB, Clifton PM. Consumption of red and processed meat and refined grains for 4 weeks decreases insulin sensitivity in insulin-resistant adults: a randomized crossover study. Metabolism. 2017;68:173–83. https://doi.org/10.1016/j.metabol.2016.12.011.

    Article  CAS  PubMed  Google Scholar 

  32. Esposito K, Maiorino MI, Bellastella G, et al. A journey into a Mediterranean diet and type 2 diabetes: a systematic review with meta-analyses. BMJ Open. 2015;5(8):e008222. https://doi.org/10.1136/bmjopen-2015-008222.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Huo R, Du T, Xu Y, et al. Effects of Mediterranean-style diet on glycemic control, weight loss and cardiovascular risk factors among type 2 diabetes individuals: a meta-analysis. Eur J Clin Nutr. 2015;69:1200–8.

    Article  CAS  PubMed  Google Scholar 

  34. Schwingshackl L, Missbach B, König J, Hoffmann G. Adherence to a Mediterranean diet and risk of diabetes: a systematic review and meta-analysis. Public Health Nutr. 2015;18(7):1292–9.

    Article  PubMed  Google Scholar 

  35. Koloverou E, Esposito K, Giugliano D, Panagiotakos D. The effect of Mediterranean diet on the development of type 2 diabetes mellitus: a meta-analysis of 10 prospective studies and 136,846 participants. Metabolism. 2014;63:903–11.

    Article  CAS  PubMed  Google Scholar 

  36. Schwingshacki L, Hoffmann G. Mediterranean dietary pattern, inflammation and endothelial function: a systematic review and meta-analysis of intervention trials. Nutr Metab Cardiovasc Dis. 2014;24(9):923–39.

    Google Scholar 

  37. Carter P, Achana F, Troughton J, et al. A Mediterranean diet improves HbA1c but not fasting blood glucose compared to alternative dietary strategies: a network meta-analysis. J Hum Nutr Diet. 2014;27:280–97.

    Article  CAS  PubMed  Google Scholar 

  38. Ajala O, English P, Pinkney J. Systematic review and meta-analysis of different dietary approaches to the management of type 2 diabetes. Am J Clin Nutr. 2013;97:505–16.

    Article  CAS  PubMed  Google Scholar 

  39. Salas-Salvado J, Bullo M, Estruch R, et al. Prevention of diabetes with Mediterranean diets. Ann Inter Med. 2014;160(1):1–10.

    Article  Google Scholar 

  40. Martínez-González MA, de la Fuente-Arrillaga C, Nunez-Cordoba JM, et al. Adherence to Mediterranean diet and risk of developing diabetes: prospective cohort study. BMJ. 2008;336:1348–51.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maiorino ML, Bellastella G, Petrizzo M, et al. Mediterranean diet cools down the inflammatory milieu in type 2 diabetes: the MEDITA randomized controlled trial. Endocrine. 2016;54(3):634–41. https://doi.org/10.1007/s12020-016-0881-1.

    Article  CAS  PubMed  Google Scholar 

  42. Esposito K, Maiorino MI, Petrizzo M, et al. The effects of a Mediterranean diet on the need for diabetes drugs and remission of newly diagnosed type 2 diabetes: follow-up of a randomized trial. Diabetes Care. 2014;37:1824–30.

    Article  CAS  PubMed  Google Scholar 

  43. Snorgaard O, Poulsen GM, Andersen HK, et al. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res Care. 2017;5:e000354. https://doi.org/10.1136/bmjdrc-2016-000354.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Shirani F, Salehi-Abargouei A, Azadbakht L. Effects of DASH diet on some risk for developing type 2 diabetes: a systematic review and meta-analysis on controlled clinical trials. Nutrition. 2013;29(7):939–47.

    Article  PubMed  Google Scholar 

  45. Yokoyama Y, Barnard ND, Levin SM, Watanabe M. Vegetarian diets and glycemic control in diabetes: a systematic review and meta-analysis. Cardiovasc Diagn Ther. 2014;4(5):373–82.

    PubMed  PubMed Central  Google Scholar 

  46. Lee Y-M, Kim S-A, Lee I-K, et al. Effect of a brown rice based vegan diet and conventional diabetic diet on glycemic control of patients with type 2 diabetes: a 12-week randomized clinical trial. PLoS One. 2016;11(6):e0155918. https://doi.org/10.1371/journal.pone.0155918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Barnard ND, Cohen J, Jenkins DJA, et al. A low-fat vegan diet and a conventional diabetes diet in the treatment of type 2 diabetes: a randomized, controlled, 74-wk clinical trial. Am J Clin Nutr. 2009;89(suppl):1S–9S.

    Google Scholar 

  48. Barnard ND, Cohen J, Jenkins DJ, et al. A low-fat vegan diet improves glycemic control and cardiovascular risk factors in a randomized clinical trial in individuals with type 2 diabetes. Diabetes Care. 2006;29:1777–83.

    Article  CAS  PubMed  Google Scholar 

  49. Barnard ND, Scialli AR, Turner-McGrievy G, et al. The effects of a low-fat, plant-based dietary intervention on body weight, metabolism, and insulin sensitivity. Am J Med. 2005;118:991–7.

    Article  CAS  PubMed  Google Scholar 

  50. Tonstad S, Butler T, Yan R, Fraser GE. Type of vegetarian diet, body weight, and prevalence of type 2 diabetes. Diabetes Care. 2009;32:791–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lacoppidan SA, Kyrø C, Loft S, et al. Adherence to a Healthy Nordic Food Index is associated with a lower risk of type-2 diabetes-The Danish Diet, Cancer and Health Cohort Study. Forum Nutr. 2015;7:8633–44.

    Google Scholar 

  52. Dietary Guidelines Advisory Committee. Scientific report. Advisory report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes, and health: current status and trends. 2015;1–78.

    Google Scholar 

  53. McGill CR, Fulgoni VL III, Devareddy L. Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National Health and Nutrition Examination Survey 2001–2010. Forum Nutr. 2015;7:1119–30.

    Google Scholar 

  54. Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3:506–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. WHO/FAO. Diet, nutrition and prevention of chronic disease: report of a Joint WHO/FAO Expert Consultation. Geneva, Switzerland: World Health Organization. 2003/2004. http://whqlibdoc.who.int/trs/WHO_TRS_916.pdf. Accessed 17 Feb 2015.

  56. World Health Association. Global strategy on diet, physical activity and health—promoting fruit and vegetable consumption around the world. 2013. http://who.int/dietphysical%20activity/fruit/en/. Accessed 17 Feb 2015.

  57. Micha R, Khatibzadeh S, Shi P, et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open. 2015;5(9):e008705. https://doi.org/10.1136/bmjopen-2015-008705.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rebello CJ, Greenway FL, Finley JW. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev. 2014;15:392–407.

    Article  CAS  PubMed  Google Scholar 

  59. Ros E, Hu FB. Consumption of plant seeds and cardiovascular health epidemiological and clinical trial evidence. Circulation. 2013;128:553–65.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Messina V. Nutritional and health benefits of dried beans. Am J Clin Nutr. 2014;100(suppl):437S–42S.

    Article  CAS  PubMed  Google Scholar 

  61. Mattes RD, Kris-Etherton PM, Foster GD. Impact of peanuts and tree nuts on body weight and healthy weight loss in adults. J Nutr. 2008;138(suppl):1741S–5S.

    Article  CAS  PubMed  Google Scholar 

  62. Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716. https://doi.org/10.1136/bmj.i2716.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chanson-Rolle A, Meynier A, Aubin F, et al. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS One. 2015;10(6):e0131377. https://doi.org/10.1371/journal.pone.0131377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Ye EQ, Chacko SA, Chou EL, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1306–13.

    Article  CAS  Google Scholar 

  65. Parker ED, Liu S, Van Horn L, et al. The association of whole grain consumption with incident type 2 diabetes: The Women’s Health Initiative Observational Study. Ann Epidemiol. 2013;23(6):321–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wirstrom T, Hilding A, Gu HF, et al. Consumption of whole grain reduces risk of deteriorating glucose tolerance, including progression to prediabetes. Am J Clin Nutr. 2013;97:179–87.

    Article  PubMed  CAS  Google Scholar 

  67. Kochar J, Djousse L, Gaziano JM. Breakfast cereals and risk of type 2 diabetes in the Physicians’ Health Study I. Obesity. 2007;15(12):3039–44.

    Article  PubMed  Google Scholar 

  68. Sun Q, Spiegelman D, van Dam RM, et al. White rice, brown rice, and the risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–9.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Weickert MO, Roden M, Isken F, et al. Effects of supplemented isoenergetic diets differing in cereal fiber and protein content on insulin sensitivity in overweight humans. Am J Clin Nutr. 2011;94:459–71.

    Article  CAS  PubMed  Google Scholar 

  70. Pereira MA, Jacobs DR, Pins JJ, et al. Effect of whole grains on insulin sensitivity in overweight hyperinsulinemic adults. Am J Clin Nutr. 2002;75:848–55.

    Article  CAS  PubMed  Google Scholar 

  71. Weickert MO, Mohlig M, Schofl C, et al. Cereal fiber improves whole-body insulin sensitivity in overweight and obese women. Diabetes Care. 2006;29:775–80.

    Article  CAS  PubMed  Google Scholar 

  72. Robertson MD, Bickerton AS, Dennis AL, et al. Insulin-sensitizing effects of dietary resistant starch and effects on skeletal muscle and adipose tissue metabolism. Am J Clin Nutr. 2005;82:559–67.

    CAS  PubMed  Google Scholar 

  73. Landberg R, Andersson SO, Zhang JX, et al. Rye whole grain and bran intake compared with refined wheat decreases urinary C peptide, plasma insulin, and prostate specific antigen in men with prostate cancer. J Nutr. 2010;140:2180–6.

    Article  CAS  PubMed  Google Scholar 

  74. Giacco R, Lappi J, Costabile G, et al. Effects of rye and whole wheat versus refined cereal foods on metabolic risk factors: a randomised controlled two-centre intervention study. Clin Nutr. 2013;32:941–9.

    Article  CAS  PubMed  Google Scholar 

  75. Juntunen KS, Laaksonen DE, Poutanen KS, et al. High fiber rye bread and insulin secretion and sensitivity in healthy postmenopausal women. Am J Clin Nutr. 2003;77:385–91.

    Article  CAS  PubMed  Google Scholar 

  76. Giacco R, Clemente G, Cipriano D, et al. Effects of the regular consumption of wholemeal wheat foods on cardiovascular risk factors in healthy people. Nutr Metab Cardiovasc Dis. 2010;20:186–94.

    Article  CAS  PubMed  Google Scholar 

  77. Andersson A, Tengblad S, Karlström B, et al. Whole grain foods do not affect insulin sensitivity or markers of lipid peroxidation and inflammation in healthy, moderately overweight subjects. J Nutr. 2007;137:1401–7.

    Article  CAS  PubMed  Google Scholar 

  78. Brownlee IA, Moore C, Chatfield M, et al. Markers of cardiovascular risk are not changed by increased whole grain intake: the WHOLE heart study, a randomised, controlled dietary intervention. Br J Nutr. 2010;104:125–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Shen XL, Zhao T, Zhou Y, et al. Effect of oat β-glucan intake on glycaemic control and insulin sensitivity of diabetic patients: a meta-analysis of randomized controlled trials. Forum Nutr. 2016;8:39. https://doi.org/10.3390/nu8010039.

    Google Scholar 

  80. He LX, Zhao J, Huang YS, Li Y. The difference between oats and beta-glucan extract intake in the management of HbA1c, fasting glucose and insulin sensitivity: a meta-analysis of randomized controlled trials. Food Funct. 2016;7(3):1413–28. https://doi.org/10.1039/c5fo1364.

    Article  CAS  PubMed  Google Scholar 

  81. Thies F, Masson LF, Boffetta P, Kris-Etherton P. Oats and CVD risk markers: a systematic literature review. Br J Nutr. 2014;112:S19–30.

    Article  CAS  PubMed  Google Scholar 

  82. Bao L, Cai X, Xu M, Li Y. Effect of oat intake on glycaemic control and insulin sensitivity: a meta-analysis of randomised controlled trials. Br J Nutr. 2014;112:457–66.

    Article  CAS  PubMed  Google Scholar 

  83. Wang P-Y, Fang J-C, Gao Z-H, et al. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig. 2016;7:56–69.

    Article  CAS  PubMed  Google Scholar 

  84. Borch D, Juul-Hindsgaul N, Veller M, et al. Potatoes and risk of obesity, type 2 diabetes, and cardiovascular disease in apparently healthy adults: a systematic review of clinical intervention and observational studies. Am J Clin Nutr. 2016;104:489–98. https://doi.org/10.3945/ajcn.116.132332.

    Article  CAS  PubMed  Google Scholar 

  85. Li S, Miao S, Huang Y, et al. Fruit intake decreases risk of incident type 2 diabetes: an updated meta-analysis. Endocrine. 2015;48(2):454–60.

    Article  PubMed  CAS  Google Scholar 

  86. Li M, Fan Y, Zhang X, et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014;4:10. https://doi.org/10.1136/bmjopen-2014-005497.

    Google Scholar 

  87. Cooper AJ, Forouhi NG, Ye Z, et al. Fruit and vegetable intake and type 2 diabetes: EPIC-InterAct prospective study and meta-analysis. Eur J Clin Nutr. 2012;66(10):1082–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Carter P, Gray LJ, Troughton J, et al. Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ. 2010;341:c4229. https://doi.org/10.1136/bmj.c4229.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Xi B, Li S, Liu Z, et al. Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 9(3):e93471. https://doi.org/10.1371/journal.pone.0093471.

  90. Mamluk L, O’Doherty MG, Orfanos P, et al. Fruit and vegetable intake and risk of incident of type 2 diabetes: results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). Eur J Clin Nutr. 2017;71(1):83–91. https://doi.org/10.1038/ejcn. 2016.143.

    Article  CAS  PubMed  Google Scholar 

  91. Mursu J, Virtanen JK, Tuomainen T-P, et al. Intake of fruit, berries, and vegetables and risk of type 2 diabetes in Finnish men: The Kuopio Ischaemic Heart Disease Risk Factor Study. Am J Clin Nutr. 2014;99:328–33.

    Article  CAS  PubMed  Google Scholar 

  92. Muraki I, Imamura F, Manson JE, et al. Fruit consumption and risk of type 2 diabetes: results from three prospective longitudinal cohort studies. BMJ. 2013;347:f5001. https://doi.org/10.1136/bmj.f5001.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cooper AJ, Sharp SJ, Lentjes MAH, et al. prospective study of the association between quantity and variety of fruit and vegetable intake and incident type 2 diabetes. Diabetes Care. 2012;35:1293–300.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Muraki I, Rimm EB, Willett WC, et al. Potato consumption and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care. 2016;39:376–84.

    Article  CAS  PubMed  Google Scholar 

  95. Halton TL, Willett WC, Liu S, et al. Potato and french fry consumption and risk of type 2 diabetes in women. Am J Clin Nutr. 2006;83:284–90.

    CAS  PubMed  Google Scholar 

  96. Wallace IR, McEvoy CT, Hunter SJ, et al. Dose-response effect of fruit and vegetables on insulin resistance in people at high risk of cardiovascular disease. A randomized controlled trial. Diabetes Care. 2013;36(12):3888–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Taniguchi A, Yamanaka-Okumura H, Nishida Y, et al. Natto and viscous vegetables in a Japanese style meal suppress postrandial glucose and insulin responses. Asia Pac J Clin Nutr. 2008;17(4):663–8.

    CAS  PubMed  Google Scholar 

  98. Flood A, Mai V, Pfeiffer R, et al. The effect of high-fruit and -vegetable, high-fiber, low fat dietary intervention on serum concentrations of insulin, glucose, IGF-1 and IGFBP-3. Eur J Clin Nutr. 2008;62(2):186–96.

    Article  CAS  PubMed  Google Scholar 

  99. Anderson JW, Waters AR. Raisin consumption by humans: effects on glycemia and insulinemia and cardiovascular risk factors. J Food Sci. 2013;78(S1):A11–7.

    Article  CAS  PubMed  Google Scholar 

  100. Anderson JW, Weiter KM, Christian AL, et al. Raisins compared with other snack effects on glycemia and blood pressure: a randomized, controlled trial. Postgrad Med. 2014;126(1):37–43.

    Article  PubMed  Google Scholar 

  101. Esfahani A, Lam J, Kendal CWC. Acute effects of raisin consumption on glucose and insulin response in healthy individuals. J Nutr Sci. 2014;3(c1). https://doi.org/10.1017/jns.2013.33.

  102. Becerra-Tomas N, Diaz-Lopez A, Rosique-Esteban N, et al. Legume consumption is inversely associated wirh type 2 diabetes incidence in adults: a prospective assessment from the PREDIMED study. Clin Nutr. 2017; doi: 1016/j.clnu.2017.03.015.

    Google Scholar 

  103. Agrawal S, Ebrahim S. Association between legume intake and self-reported diabetes among adult men and women in India. BMC Public Health. 2013;13(1):706. https://doi.org/10.1186/1471-2458-13-706.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jiang R, Manson JE, Stampfer MJ, et al. Nut and peanut butter consumption and risk of type 2 diabetes in women. JAMA. 2002;288(20):2554–60.

    Article  PubMed  Google Scholar 

  105. Mueller NT, Odegaard AO, Gross MD, et al. Soy intake and risk of type 2 diabetes mellitus in Chinese Singaporeans: soy intake and risk of type 2 diabetes. Eur J Nutr. 2012;51(8):1033–40.

    Article  CAS  PubMed  Google Scholar 

  106. Ding M, Pan A, Manson JE, et al. Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr. 2016;70(12):1381. https://doi.org/10.1038/ejcn.2016. 117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Nanri A, Mizoue T, Takahashi Y, et al. Soy product and isoflavone intakes are associated with a lower risk of type 2 diabetes in overweight Japanese women. J Nutr. 2010;140:580–6.

    Article  CAS  PubMed  Google Scholar 

  108. Morimoto Y, Steinbrecher A, Kolonel LN, et al. Soy consumption is protective against diabetes in Hawaii: The Multiethnic Cohort. Eur J Clin Nutr. 2011;65(2):279–82.

    Article  CAS  PubMed  Google Scholar 

  109. Sievenpiper JL, Kendall CWC, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52:1479–95.

    Article  CAS  PubMed  Google Scholar 

  110. Pittaway JK, Robertson IK, Ball MJ. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc. 2008;108:1009–13.

    Article  CAS  PubMed  Google Scholar 

  111. Marinangeli CPF, Jones PJH. Whole and fractionated yellow pea flours reduce fasting insulin and insulin resistance in hypercholesterolaemic and overweight human subjects. Br J Nutr. 2011;105:110–7.

    Article  CAS  PubMed  Google Scholar 

  112. Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:278–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Pan A, Sun Q, Mason JE, et al. Walnut consumption is associated with lower risk of type 2 diabetes in women. J Nutr. 2013;143:512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bao Y, Han J, Hu FB, et al. Association of nut consumption with total and cause-specific mortality. N Engl J Med. 2013;369:2001–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Njike VY, Ayettey R, Petraro P, et al. Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res Care. 2015;3:e000115. https://doi.org/10.1136/bmjdrc-2015-000115.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hernandez-Alonso P, Salas-Salvado J, Baldrich-Mora M, et al. Beneficial effects of pistachio consumption on glucose metabolism, insulin resistance, inflammation, and related metabolic risk markers: a randomized clinical trial. Diabetes Care. 2014;37(11):3098–105.

    Article  CAS  PubMed  Google Scholar 

  117. Wien M, Bleich D, Raghuwanshi M, et al. Almond consumption and cardiovascular risk factors in adults with prediabetes. J Am Coll Nutr. 2010;29(3):189–97.

    Article  PubMed  Google Scholar 

  118. Casas-Agustench P, Lopez-Uriarte P, Bullo M, et al. Effects of one serving of mixed nuts on serum lipids, insulin resistance and inflammatory markers in patients with the metabolic syndrome. Nutr Cardiovasc Dis. 2011;21(2):126–35.

    Article  CAS  Google Scholar 

  119. Rhee Y, Brunt A. Flaxseed supplementation improved insulin resistance in obese glucose intolerant people: a randomized crossover design. Nutr J. 2011;10(1):44. https://doi.org/10.1186/1475-2891-10-44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Hutchins AM, Brown BD, Cunnane SC, et al. Daily flaxseed consumption improves glycemic control in obese men and women with pre-diabetes: a randomized study. Nutr Res. 2013;33(5):367–75.

    Article  CAS  PubMed  Google Scholar 

  121. McMacken M, Shah S. A plant-based diet for the prevention and treatment of type 2 diabetes. J Geriatric Cardio. 2017;14:342–54.

    Google Scholar 

  122. Lopez-Jaramillo P. The role of adiponectin in cardiometabolic diseases: effects of nutritional interventions. J Nutr. 2016;146(Suppl):422S–6S.

    Google Scholar 

  123. Fisman EZ, Tenenbaum A. Adiponectin: a manifold therapeutic target for metabolic syndrome, diabetes, and coronary disease? Cardiovasc Diabetol. 2014;13(1):103. https://doi.org/10.1186/1475-2840-13-103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. McGeoghegan L, Muirhead CR, Almoosawi S. Association between an anti-inflammatory and anti-oxidant dietary pattern and diabetes in British adults: results from the national diet and nutrition survey rolling programme years 1-4. Int J Food Sci Nutr. 2015;67(5):553–61. https://doi.org/10.1080/09637486.2016.1179268.

    Article  CAS  PubMed  Google Scholar 

  125. Wood AD, Strachan AA, Thies F, et al. Patterns of dietary intake and serum carotenoid and tocopherol status are associated with biomarkers of chronic low-grade systemic inflammation and cardiovascular risk. Br J Nutr. 2014;112:1341–52. https://doi.org/10.1017/S0007114514001962.

    Article  CAS  PubMed  Google Scholar 

  126. Medina-Remón A, Rosa Casas R, Anna Tressserra-Rimbau A, et al. Polyphenol intake from a Mediterranean diet decreases inflammatory biomarkers related to atherosclerosis: a substudy of the PREDIMED trial. Br J Clin Pharmacol. 2017;83:114–28.

    Google Scholar 

  127. Lin D, Xiao M, Zhan J, et al. An overview of plant phenolic compounds and their importance in human nutrition and management of type 2 diabetes. Molecules. 2016;21:1374. https://doi.org/10.3390/molecules21101374.

    Article  CAS  Google Scholar 

  128. Jiao J, Xu J-Y, Zhang W, et al. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9. https://doi.org/10.3109/09637486.2014.959898.

    Article  CAS  PubMed  Google Scholar 

  129. Bertoia ML, Rimm EB, Mukamal KJ, et al. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ. 2016;352:i17. https://doi.org/10.1136/bmj.i17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Dahl WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: health implications of dietary fiber. J Acad Nutr Diet. 2015;115:1861–70.

    Article  PubMed  Google Scholar 

  131. Sylvetsky AC, Edelstein SL, Walford G, et al. A high-carbohydrate, high-fiber, low-fat diet results in weight loss among adults at high risk of type 2 diabetes. J Nutr. 2017; doi: 10.3945/ jn.117.252395.

  132. de Carvalho CM, de Paula TP, Viana LV, et al. Plasma glucose and insulin responses after consumption of breakfasts with different sources of soluble fiber in type 2 diabetes patients: a randomized crossover clinical trial. Am J Clin Nutr. 2017; doi: 10.3945/ajcn.117.157263.

  133. Rahman S, Zhao A, Xiao D, et al. A randomized, controlled trial evaluating polydextrose as a fiber in a wet and dry matrix on glycemic control. J Food Sci. 2017; doi: 10.1111/1750-3841.13855.

  134. Jenkins DJA, Kendall CWC, McKeown-Eyssen G, et al. Effect of a low-glycemic index or a high-cereal fiber diet on type 2 diabetes a randomized trial. JAMA. 2008;300(23):2742–53.

    Google Scholar 

  135. Kondo K, Morino K, Nishio Y, et al. Fiber-rich diet with brown rice improves endothelial function in type 2 diabetes mellitus: A randomized controlled trial. PLOS ONE. 2017;12(6):e0179869

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix AComparison of Western and Healthy Dietary Patterns per 2000 kcal (Approximated Values)

Components

Western dietary pattern (US)

USDA base pattern

DASH diet pattern

Healthy Mediterranean pattern

Healthy vegetarian pattern (lact-ovo based)

Vegan pattern

Emphasizes

Refined grains, low fiber foods, red meats, sweets, and solid fats

Vegetables, fruit, whole-grain, and low-fat milk

Potassium rich vegetables, fruits, and low fat milk products

Whole grains, vegetables, fruit, dairy products, olive oil, and moderate wine

Vegetables, fruit, whole-grains, legumes, nuts, seeds, milk products, and soy foods

Plant foods: vegetables, fruits, whole grains, nuts, seeds, and soy foods

Includes

Processed meats, sugar sweetened beverages, and fast foods

Enriched grains, lean meat, fish, nuts, seeds, and vegetable oils

Whole-grain, poultry, fish, nuts, and seeds

Fish, nuts, seeds, and pulses

Eggs, non-dairy milk alternatives, and vegetable oils

Non-dairy milk alternatives

Limits

Fruits and vegetables, whole-grains

Solid fats and added sugars

Red meats, sweets and sugar-sweetened beverages

Red meats, refined grains, and sweets

No red or white meats, or fish; limited sweets

No animal products allowed

Estimated nutrients/components

 

Carbohydrates (% Total kcal)

49

51

55

52

55

57

Protein (% Total kcal)

16

18

18

18

14–15

13–14

Total fat (% Total kcal)

33

33

27

32

34

33

Saturated fat (% Total kcal)

11

8

6

8

8

7

Unsat. fat

(% Total kcal)

22

25

21

24

26

25

Fiber (g)

16

31

29+

31

35+

40+

Potassium (mg)

2800

3350

4400

3350

3300

3650

Vegetable oils (g)

19

27

25

27

19–27

18–27

Sodium (mg)

3600

1790

1100

1690

1400

1225

Added sugar (g)

79 (20 tsp)

32 (8 tsp)

12 (3 tsp)

32 (8 tsp)

32 (8 tsp)

32 (8 tsp)

Plant food groups

Fruit (cup)

≤1.0

2.0

2.5

2.5

2.0

2.0

Vegetables (cup)

≤1.5

2.5

2.1

2.5

2.5

2.5

Whole-grains (oz.)

0.6

3.0

4.0

3.0

3.0

3.0

Legumes (oz.)

1.5

0.5

1.5

3.0

3.0+

Nuts/Seeds (oz.)

0.5

0.6

1.0

0.6

1.0

2.0

Soy products (oz.)

0.0

0.5

1.1

1.5

  1. U.S. Department of Agriculture, Agriculture Research Service, Nutrient Data Laboratory. 2014. USDA National Nutrient Database for Standard Reference, Release 27. http://www.ars.usda.gov/nutrientdata. Accessed 17 Feb 2015
  2. Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Appendix E-3.7: Developing vegetarian and Mediterranean-style food patterns. 2015;1–9
  3. U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th ed. Washington, DC: U.S. Government Printing Office. 2010; Table B2.4; http://www.choosemyplate.gov/. Accessed 22 Aug 2015

Appendix BEstimated Range of Energy, Fiber, Nutrients and Phytochemicals Composition of Whole or Minimally Processed Foods/100 g Edible Portion

Components

Whole-grains

Fresh fruit

Dried fruit

Vegetables

Legumes

Nuts/seeds

Nutrients and phytochemicals

Wheat, oats, barley, brown rice, whole grain bread, cereal, pasta, rolls and crackers

Apples, pears, bananas, grapes, oranges, blueberries, strawberries, and avocados

Dates, dried figs, apricots, cranberries, raisins, and prunes

Potatoes, spinach, carrots, peppers, lettuce, green beans, cabbage, onions, cucumber, cauliflower, mushrooms, and broccoli

Lentils, chickpeas, split peas, black beans, pinto beans, and soy beans

Almonds, Brazil nuts, cashews, hazelnuts, macadamias, pecans, walnuts, peanuts, sunflower seeds, and flaxseed

Energy (kcal)

110–350

30–170

240–310

10–115

85–170

520–700

Protein (g)

2.5–16

0.5–2.0

0.1–3.4

0.2–5.0

5.0–17

7.8–24

Available Carbohydrate (g)

23–77

1.0–25

64–82

0.2–25

10–27

12–33

Fiber (g)

3.5–18

2.0–7.0

5.7–10

1.2–9.5

5.0–11

3.0–27

Total fat (g)

0.9–6.5

0.0–15

0.4–1.4

0.2–1.5

0.2–9.0

46–76

SFAa (g)

0.2–1.0

0.0–2.1

0.0

0.0–0.1

0.1–1.3

4.0–12

MUFAa (g)

0.2–2.0

0.0–9.8

0.0–0.2

0.1–1.0

0.1–2.0

9.0–60

PUFAa (g)

0.3–2.5

0.0–1.8

0.0–0.7

0.0.0.4

0.1–5.0

1.5–47

Folate (ug)

4.0–44

<5.0–61

2–20

8.0–160

50–210

10–230

Tocopherols (mg)

0.1–3.0

0.1–1.0

0.1–4.5

0.0–1.7

0.0–1.0

1.0–35

Potassium (mg)

40–720

60–500

40–1160

100–680

200–520

360–1050

Calcium (mg)

7.0–50

3.0–25

10–160

5.0–200

20–100

20–265

Magnesium (mg)

40–160

3.0–30

5.0–70

3.0–80

40–90

120–400

Phytosterols (mg)

30–90

1.0–83

1.0–54

110–120

70–215

Polyphenols (mg)

70–100

50–800

24–1250

120–6500

130–1820

Carotenoids (ug)

25–6600

0.6–2160

10–20,000

50–600

0.0–1200

  1. Ros E, Hu FB. Consumption of plant seeds and cardiovascular health epidemiological and clinical trial evidence. Circulation. 2013;128:553–65
  2. USDA. What We Eat in America, NHANES 2011–2012, individuals 2 years and over (excluding breast-fed children). Available: www.ars.usda.gov/nea/bhnrc/fsrg
  3. Rodriguez-Casado A. The health potential of fruits and vegetables phytochemicals: notable examples. Crit Rev Food Sci Nutr. 2016;56(7):1097–107
  4. Rebello CJ, Greenway FL, Finley JW. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev. 2014;15:392–407
  5. Gebhardt SE, Thomas RG. Nutritive Value of Foods. 2002; U.S. Department of Agriculture, Agricultural Research Service, Home and Garden Bulletin 72
  6. Holden JM, Eldridge AL, Beecher GR, et al. Carotenoid content of U.S. Foods: an update of the database. J Food Comp An. 1999;12:169–96
  7. Lu Q-Y, Zhang Y, Wang Y, et al. California Hass avocado: profiling of carotenoids, tocopherol, fatty acid, and fat content during maturation and from different growing areas. J Agric Food Chem. 2009;57(21):10408–413
  8. Wu X, Beecher GR, Holden JM, et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 2004;52:4026–37
  9. SFA saturated fat, MUFA monounsaturated fat, PUFA polyunsaturated fat
  10. U.S. Department of Agriculture, Agriculture Research Service, Nutrient Data Laboratory. 2014. USDA National Nutrient Database for Standard Reference, Release 27. http://www.ars.usda.gov/nutrientdata. Accessed 17 Feb 2015

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Dietary Patterns and Whole Plant Foods in Type 2 Diabetes Prevention and Management. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59180-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59180-3_9

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59179-7

  • Online ISBN: 978-3-319-59180-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics