Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease

  • Mark L. Dreher
Part of the Nutrition and Health book series (NH)


Over the course of human evolution, a symbiotic relationship was formed between fiber-rich diets, the colonic microbiota and human health homeostasis. However, the emergence of the Western low fiber diet as a dominant global dietary pattern has disrupted this symbiotic relationship leading to an increased population risk for unhealthy aging, chronic diseases and premature death. Fiber, a critical dietary factor in the maintenance of a healthy microbiota ecosystem, has emerged in recent decades for its importance in promoting colonic health, healthy aging, and reducing the risk of cardiometabolic chronic disease and premature death. Fiber is the primary dietary energy source of the microbiota bacteria and the breakdown products of the resulting fiber fermentation include short chain fatty acids such as butyrate which is the main energy source needed for healthy colonocytes and optimization of colonic barrier defenses. Daily adequate fiber intake supports colonic microbiota health by increasing probiotic and decreasing pathogenic bacteria lowering risk of endotoxemia and reducing colonic pH and bowel transit time, and contributing to greater stool bulk to dilute potential toxic or carcinogenic compounds or metabolites. Fiber-rich healthy dietary patterns support the health of colonic microbiota and their action in protecting the colon from infections such as C difficile, inflammatory bowel disease and colorectal cancer; slowing the aging process by decreasing the risk of weight gain and obesity, type 2 diabetes, and metabolic syndrome; and reducing the risk of frailty and premature death. In the elderly, high-fiber diets play an important role in establishing a healthy colonic microbiota associated with lower risk of frailty and longer life expectancy due in part to higher butyrate production and lower risk of inflammaging.


Dietary fiber Dietary patterns Microbiota Short chain fatty acids Butyrate Symbionts Pathobionts C. difficile Inflammatory bowel disease Colorectal cancer Obesity Type 2 diabetes Metabolic syndrome Aging Frailty Centenarians Mortality 


  1. 1.
    Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280(4):339–49. PubMedCrossRefGoogle Scholar
  2. 2.
    Keenan MJ, Marco ML, Ingram DK, Martin RJ. Improving healthspan via changes in gut microbiota and fermentation. Age (Dordr). 2015;37(5):98. CrossRefGoogle Scholar
  3. 3.
    El Enshasy H, Malik K, Malek RA, et al. Anaerobic probiotics: the key microbes for human health. Adv Biochem Eng Biotechnol. 2016;156:397–431. PubMedGoogle Scholar
  4. 4.
    Oozeer R, van Limpt K, Ludwig T, et al. Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides. Am J Clin Nutr. 2013;98(suppl):561S–71S.PubMedCrossRefGoogle Scholar
  5. 5.
    Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Jia W, Li H, Zhao L, Nicholson JK. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Disord. 2008;7(2):123–9.CrossRefGoogle Scholar
  8. 8.
    Mazidi M, Rezaie P, Kengne AP, et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S150–7. Scholar
  9. 9.
    Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5.PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.PubMedCrossRefGoogle Scholar
  12. 12.
    Ley RE, Turnbaugh P, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.PubMedCrossRefGoogle Scholar
  13. 13.
    Woodmansey EJ. Intestinal bacteria and ageing. J Appl Microbiol. 2007;102:1178–86.PubMedCrossRefGoogle Scholar
  14. 14.
    Tuohy KM, Fava F, Viola R. The way to a man’s heart is through his gut microbiota’—dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc. 2014;73:172–85.PubMedCrossRefGoogle Scholar
  15. 15.
    Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–72.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Logan AC, Jacka FN, Prescott SL. Immune–microbiota interactions: dysbiosis as a global health issue. Curr Allergy Asthma Rep. 2016;16:13. PubMedCrossRefGoogle Scholar
  17. 17.
    Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 2014;6(2):41–51.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.PubMedCrossRefGoogle Scholar
  19. 19.
    Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21.PubMedCrossRefGoogle Scholar
  20. 20.
    Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA. Fermentability of various fiber sources by human fecal bacteria in vitro. Am J Clin Nutr. 1991;53:1418–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503.PubMedCrossRefGoogle Scholar
  22. 22.
    Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2015;65(2):330–9.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Deehan C, Walter J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab. 2016;27(5):239–41.PubMedCrossRefGoogle Scholar
  24. 24.
    Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7:887–94.PubMedCrossRefGoogle Scholar
  25. 25.
    Jew S, Abumweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Dominianni C, Sinha R, Goedert JJ, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599. PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    IOM (Institute of Medicine). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. 2002/2005. National Academies Press, Washington DC.Google Scholar
  28. 28.
    Milani C, Ferrario C, Turron F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46. PubMedCrossRefGoogle Scholar
  29. 29.
    Parekh PJ, Balart LA, Johnson DA. The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol. 2015;6:e91. Scholar
  30. 30.
    Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.PubMedCrossRefGoogle Scholar
  31. 31.
    Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Forum Nutr. 2015;7:17–44.Google Scholar
  32. 32.
    Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr. 1987;45(5 suppl):1243–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Mehta RS, Nishihara R, Cao Y, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017.
  34. 34.
    Racine A, Carbonnel F, Chan SS, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm Bowel Dis. 2016;2292:345–54. CrossRefGoogle Scholar
  35. 35.
    Gutiérrez-Díaz I, Fernández-Navarro T, Sánchez B, et al. Mediterranean diet and faecal microbiota: a transversal study. Food Funct. 2016;;7(5):2347-56.
  36. 36.
    GD W, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72.CrossRefGoogle Scholar
  37. 37.
    De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2015;65(11):1812–21. PubMedCrossRefGoogle Scholar
  38. 38.
    Matijasic BB, Obermajer T, Lipoglavsek L, et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014;53(4):1051–64.PubMedCrossRefGoogle Scholar
  39. 39.
    Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Zimmer J, Lange B, Frick J-S, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53–60.PubMedCrossRefGoogle Scholar
  41. 41.
    Kabeerdoss J, Devi RS, Mary RR, et al. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br J Nutr. 2012;108:9544.CrossRefGoogle Scholar
  42. 42.
    GD W, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. CrossRefGoogle Scholar
  43. 43.
    Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64.PubMedCrossRefGoogle Scholar
  44. 44.
    O’Keefe JD, Li JV, Lahti L, et al. Fat, fiber and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.PubMedCrossRefGoogle Scholar
  46. 46.
    Klinder A, Shen Q, Heppel S, et al. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct. 2016;7:1788–96.PubMedCrossRefGoogle Scholar
  47. 47.
    Heinritz SN, Weiss E, Eklund M, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11(4):e0154329. PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Wang Y, Ames NP, Tun HM, et al. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol. 2016;7:129. PubMedPubMedCentralGoogle Scholar
  49. 49.
    Martinez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. The. ISME J. 2013;7:269–80.PubMedCrossRefGoogle Scholar
  50. 50.
    Carvalho-Wells AL, Helmolz K, Nodet C, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010;104:1353–6.PubMedCrossRefGoogle Scholar
  51. 51.
    Costabile A, Klinder A, Fava F, et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99:110–20.PubMedCrossRefGoogle Scholar
  52. 52.
    Reveles KR, Lee GC, Boyd NK, Frei CR. The rise in Clostridium difficile infection incidence among hospitalized adults in the United States: 2001-2010. Am J Infect Control. 2014;42:1028–32.PubMedCrossRefGoogle Scholar
  53. 53.
    Van den Abbeele P, Verstraete W, Aidy SE, et al. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. J Microbial Biotechnol. 2013;6(4):335–40. CrossRefGoogle Scholar
  54. 54.
    Zhang I, Dong D, Jiang C, et al. Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization. Anaerobe. 2015;34:1–7. PubMedCrossRefGoogle Scholar
  55. 55.
    May T, Mackie RI, Fahey GC, et al. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol. 1994;29(10):916–22.PubMedCrossRefGoogle Scholar
  56. 56.
    Forssten SD, Roytio H, Ashley A, et al. The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile infected human colonic model. Microb Ecol Health Dis. 2015;26:27988. Scholar
  57. 57.
    Johnson LP, Walton GE, Psichas A, et al. Prebiotics modulate the effects of antibiotics on gut microbial diversity and functioning in vitro. Forum Nutr. 2015;7:4480–97.Google Scholar
  58. 58.
    Aleksandrova K, Romero-Mosquera B, Hernandez V. Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention, Nutrients. 2017;9:962.Google Scholar
  59. 59.
    Liu X, Wu Y, Li F, Zhang D. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr Res. 2016;2292:345–54; doi: 20.1097/MIB00000000000638.Google Scholar
  60. 60.
    Burkitt DP. Possible relationships between bowel cancer and dietary habits. Proc R Soc Med. 1971;64:964–5.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. 2016;43(1):97–106. Scholar
  62. 62.
    Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res. 2017; 61(1); doi: 10.1002/mnfr.201500902.Google Scholar
  63. 63.
    Aune D, Chan DSM, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617. Scholar
  64. 64.
    World Cancer Research Fund, American Institute of Cancer Research. Continuous Update Project. Colorectal Cancer 2011 Report. Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer. London; 2011.Google Scholar
  65. 65.
    Kunzmann AT, Coleman HG, Huang W-Y, et al. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr. 2015;102:881–90.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chen HM, Y-N Y, Wang J-L, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr. 2013;97:1044–52.PubMedCrossRefGoogle Scholar
  67. 67.
    Miller WC, Niederpruem MG, Wallace JP, Lindeman AK. Dietary fat, sugar, and fiber predict body fat content. J Am Diet Assoc. 1994;94:612–5.PubMedCrossRefGoogle Scholar
  68. 68.
    Epstein LH, Gordy CC, Raynor HA, et al. Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obes Res. 2001;9:171–8.PubMedCrossRefGoogle Scholar
  69. 69.
    Epstein LH, Paluch RA, Beecher MD, Roemmich JN. Increasing healthy eating vs. reducing high energy-dense foods to treat pediatric obesity. Obesity (Silver Spring). 2008;16(2):318–26.CrossRefGoogle Scholar
  70. 70.
    Davis JN, Hodges VA, Gillham B. Normal-weight adults consume more fiber and fruit than their age- and height-matched overweight/obese counterparts. J Am Diet Assoc. 2006;106:833–40.PubMedCrossRefGoogle Scholar
  71. 71.
    Davis JN, Alexander KE, Ventura EE, et al. Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr. 2009;90:1160–6.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Center for Disease Control and Prevention (CDC). Eat more weigh less? How to manage your weight without being hungry. Accessed May 21, 2016.
  73. 73.
    Savage JS, Marini M, Birch LL. Dietary energy density predicts women’s weight change over 6 years. Am J Clin Nutr. 2008;88(3):677–84.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Bertoia ML, Mukamal KJ, Cahill LE, et al. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: analysis from three prospective cohort studies. PLoS Med. 2015;12(9):e1001878. PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Barczynska B, Bandurska K, Slizewska K, et al. Intestinal microbiota, obesity and prebiotics. Polish. J Microbiol. 2015;64(2):93–100.Google Scholar
  76. 76.
    Brahe LK, Astrup A, Larsen LH. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv Nutr. 2016;7:90–101. PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.PubMedCrossRefGoogle Scholar
  78. 78.
    Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.PubMedCrossRefGoogle Scholar
  79. 79.
    Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.PubMedCrossRefGoogle Scholar
  80. 80.
    Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Miquel S, Martín R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16:255–61.PubMedCrossRefGoogle Scholar
  82. 82.
    Geurts L, Neyrinck AM, Delzenne NM, et al. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benefic Microbes. 2014;5(1):3–17.CrossRefGoogle Scholar
  83. 83.
    Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.PubMedCrossRefGoogle Scholar
  84. 84.
    Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Sánchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food. 2012;15(3):223–30. PubMedCrossRefGoogle Scholar
  86. 86.
    Hjorth MF, Roager HM, Larsen TM, et al. Pre-tretment microbial Prevotella-to-Bacteroides ratio, determeines body fat loss success during 6-month randomized controlled diet intervention. Int J Obes. 2017; doi: 10.1038/ijo.2017.220.
  87. 87.
    Million M, Maraninchi M, Henry M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012;36:817–25.CrossRefGoogle Scholar
  88. 88.
    Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8.PubMedGoogle Scholar
  89. 89.
    Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5(190):1–10.Google Scholar
  90. 90.
    Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121. Scholar
  91. 91.
    Blaut M. Gut microbiota and energy balance: role in obesity. Proc Nutr Soc. 2015;74:227–34; doi: 10.1017/S0029665114001700.Google Scholar
  92. 92.
    Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74:328–336; doi: 10.1017/S0029665114001657.Google Scholar
  93. 93.
    Ley SH, Hamdy O, Mahan V, Prevention HFB. management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Tabák AG, Herder C, Rathmann W, et al. Prediabetes: A high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27:73–83.PubMedCrossRefGoogle Scholar
  96. 96.
    Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case–control study. BMC Med. 2013;11:46.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Serino M, Fernandez-Real JM, Garcıa Fuentes E, et al. The gut microbiota profile is associated with insulin action in humans. Acta Diabetol. 2013;50:753–61.PubMedCrossRefGoogle Scholar
  98. 98.
    Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.PubMedCrossRefGoogle Scholar
  100. 100.
    Nagpal R, Kumar M, Yadav AK, et al. Gut microbiota in health and dsiease: an overview focused on metabolic inflammation. Benef Microbes. 2016; 7(2):181–94.Google Scholar
  101. 101.
    Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5:765–75.PubMedCrossRefGoogle Scholar
  102. 102.
    Fallucca F, Fontana L, Fallucca S, Pianesi M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J Diabetes. 2015;6(3):403–11.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Karimi P, Farhangi MA, Sarmadi B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial. Ann Nutr Metab. 2016;68(2):85–93.PubMedCrossRefGoogle Scholar
  104. 104.
    Bodinham CL, Smith L, Thomas EL, et al. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect. 2014;3:75–84.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–36.PubMedCrossRefGoogle Scholar
  106. 106.
    Festi D, Schiumerini R, Eusebi LH, et al. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20(43):16079–94.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Martinez-Gonzalez MA, Martin-Calvo N. The major European dietary pattern and metabolic syndrome. Rev Endocr Metab Disord. 2013;14(3):265–71.PubMedCrossRefGoogle Scholar
  108. 108.
    Vetrani C, Costabile G, Luongo D, et al. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition. 2016;32:217–21.PubMedCrossRefGoogle Scholar
  109. 109.
    Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.PubMedCrossRefGoogle Scholar
  110. 110.
    Yoon NR, Yoon S, Lee S-M. Rice cakes containing dietary fiber supplemented with or without Artemisia annua and Gynura procumbens Merr. alleviated the risk factors of metabolic syndrome. Clin Nutr Res. 2016;5:79–88.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Brahe LK, Le Chatelier E, Prifti E. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes. 2015; e159. doi:
  112. 112.
    Galisteo M, Duarte J, Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biol. 2008;19:71–84.CrossRefGoogle Scholar
  113. 113.
    Rehman T. Role of the gut microbiota in age-related chronic inflammation. Endocr Metab Immune Disord Drug Targets. 2012;12:361–7.PubMedCrossRefGoogle Scholar
  114. 114.
    Brüssow H. Microbiota and healthy ageing: observational and nutritional intervention studies. Microbial Biotechnol. 2013;6:326–34.CrossRefGoogle Scholar
  115. 115.
    O’Toole PWO, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5.PubMedCrossRefGoogle Scholar
  116. 116.
    Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63(4):776–81.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987;237:143–9. PubMedCrossRefGoogle Scholar
  118. 118.
    Stenman LK, Burcelin R, Lahtinen S. Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans -towards treatment with probiotics. Benefic Microbes. 2015;7(1):11–22.CrossRefGoogle Scholar
  119. 119.
    Cuervo A, Salazar N, Ruas-Madiedob P, et al. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr Res. 2013;33:811–6.PubMedCrossRefGoogle Scholar
  120. 120.
    Jiao J, J-Y X, Zhang W, et al. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9.PubMedCrossRefGoogle Scholar
  121. 121.
    Grooms KN, Ommerborn MJ, Quyen D, et al. Dietary fiber intake and cardiometabolic risk among US adults, NHANES 1999-2010. Am J Med. 2013;126(12):1059–67.PubMedCrossRefGoogle Scholar
  122. 122.
    Cassidy A, De Vivo I, Liu Y, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91:1273–83.PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Abdullah MM, Gyles CL, Marinangeli CP, et al. Cost-of-illness analysis reveals potential healthcare savings with reductions in type 2 diabetes and cardiovascular disease following recommended intakes of dietary fiber in Canada. Front Pharmacol. 2015;6:167. PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Liu L, Wang S, Liu J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol Nutr Food Res. 2015;59:139–46.PubMedCrossRefGoogle Scholar
  125. 125.
    Park Y, Subar AF, Hollenbeck A, et al. Dietary fiber intake and mortality in the NIH-AARP Diet and Health Study. Arch Intern Med. 2011;171(12):1061–8.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Chuang S-C, Norat T, Murphy N, et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2012;96:164–74.PubMedCrossRefGoogle Scholar
  127. 127.
    Wei H, Gao Z, Liang R, et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2016;116(3):514–25. PubMedCrossRefGoogle Scholar
  128. 128.
    Nguyen B, Bauman A, Gale J, et al. Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. Int J Behav Nutr Phys Act. 2016;13:9. PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Claesson MJ, Jeffery IB, Conde S. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–85.PubMedCrossRefGoogle Scholar
  130. 130.
    Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(suppl. 1):4586–91.PubMedCrossRefGoogle Scholar
  131. 131.
    Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016;10:170–82.PubMedCrossRefGoogle Scholar
  132. 132.
    Biagi E, Franceschi C. Rampelli S, et al. Curr Bio: Gut microbiota and extreme longevity; 2016. Google Scholar
  133. 133.
    Wang F, Yu T, Huang G, Cai D. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25(8):1195–204.PubMedCrossRefGoogle Scholar
  134. 134.
    Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667. PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71:6438–42.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004;70:3575–81.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark L. Dreher
    • 1
  1. 1.Nutrition Science Solutions LLCWimberleyUSA

Personalised recommendations