Skip to main content

Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease

  • Chapter
  • First Online:
Dietary Patterns and Whole Plant Foods in Aging and Disease

Part of the book series: Nutrition and Health ((NH))

Abstract

Over the course of human evolution, a symbiotic relationship was formed between fiber-rich diets, the colonic microbiota and human health homeostasis. However, the emergence of the Western low fiber diet as a dominant global dietary pattern has disrupted this symbiotic relationship leading to an increased population risk for unhealthy aging, chronic diseases and premature death. Fiber, a critical dietary factor in the maintenance of a healthy microbiota ecosystem, has emerged in recent decades for its importance in promoting colonic health, healthy aging, and reducing the risk of cardiometabolic chronic disease and premature death. Fiber is the primary dietary energy source of the microbiota bacteria and the breakdown products of the resulting fiber fermentation include short chain fatty acids such as butyrate which is the main energy source needed for healthy colonocytes and optimization of colonic barrier defenses. Daily adequate fiber intake supports colonic microbiota health by increasing probiotic and decreasing pathogenic bacteria lowering risk of endotoxemia and reducing colonic pH and bowel transit time, and contributing to greater stool bulk to dilute potential toxic or carcinogenic compounds or metabolites. Fiber-rich healthy dietary patterns support the health of colonic microbiota and their action in protecting the colon from infections such as C difficile, inflammatory bowel disease and colorectal cancer; slowing the aging process by decreasing the risk of weight gain and obesity, type 2 diabetes, and metabolic syndrome; and reducing the risk of frailty and premature death. In the elderly, high-fiber diets play an important role in establishing a healthy colonic microbiota associated with lower risk of frailty and longer life expectancy due in part to higher butyrate production and lower risk of inflammaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280(4):339–49. https://doi.org/10.1111/joim.12508.

    Article  CAS  PubMed  Google Scholar 

  2. Keenan MJ, Marco ML, Ingram DK, Martin RJ. Improving healthspan via changes in gut microbiota and fermentation. Age (Dordr). 2015;37(5):98. https://doi.org/10.1007/s11357-015-9817-6.

    Article  CAS  Google Scholar 

  3. El Enshasy H, Malik K, Malek RA, et al. Anaerobic probiotics: the key microbes for human health. Adv Biochem Eng Biotechnol. 2016;156:397–431. https://doi.org/10.1007/10-2015-5008.

    CAS  PubMed  Google Scholar 

  4. Oozeer R, van Limpt K, Ludwig T, et al. Intestinal microbiology in early life: specific prebiotics can have similar functionalities as human-milk oligosaccharides. Am J Clin Nutr. 2013;98(suppl):561S–71S.

    Article  CAS  PubMed  Google Scholar 

  5. Nicholson JK, Holmes E, Kinross J, et al. Host-gut microbiota metabolic interactions. Science. 2012;336:1262–7.

    Article  CAS  PubMed  Google Scholar 

  6. Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165:1332–45.

    Article  CAS  PubMed  Google Scholar 

  7. Jia W, Li H, Zhao L, Nicholson JK. Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Disord. 2008;7(2):123–9.

    Article  CAS  Google Scholar 

  8. Mazidi M, Rezaie P, Kengne AP, et al. Gut microbiome and metabolic syndrome. Diabetes Metab Syndr. 2016;10(2 Suppl 1):S150–7. https://doi.org/10.1016/j.dsx.2016.01.024.

    Article  PubMed  Google Scholar 

  9. Sonnenburg ED, Sonnenburg JL. Starving our microbial self: the deleterious consequences of a diet deficient in microbiota-accessible carbohydrates. Cell Metab. 2014;20:779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sonnenburg ED, Smits SA, Tikhonov M, et al. Diet-induced extinctions in the gut microbiota compound over generations. Nature. 2016;529(7585):212–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhang C, Zhang M, Wang S, et al. Interactions between gut microbiota, host genetics and diet relevant to development of metabolic syndromes in mice. ISME J. 2010;4:232–41.

    Article  CAS  PubMed  Google Scholar 

  12. Ley RE, Turnbaugh P, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.

    Article  CAS  PubMed  Google Scholar 

  13. Woodmansey EJ. Intestinal bacteria and ageing. J Appl Microbiol. 2007;102:1178–86.

    Article  CAS  PubMed  Google Scholar 

  14. Tuohy KM, Fava F, Viola R. The way to a man’s heart is through his gut microbiota’—dietary pro- and prebiotics for the management of cardiovascular risk. Proc Nutr Soc. 2014;73:172–85.

    Article  CAS  PubMed  Google Scholar 

  15. Albenberg LG, Wu GD. Diet and the intestinal microbiome: associations, functions, and implications for health and disease. Gastroenterology. 2014;146(6):1564–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Logan AC, Jacka FN, Prescott SL. Immune–microbiota interactions: dysbiosis as a global health issue. Curr Allergy Asthma Rep. 2016;16:13. https://doi.org/10.1007/s11882-015-0590-5.

    Article  PubMed  CAS  Google Scholar 

  17. Zeng H, Lazarova DL, Bordonaro M. Mechanisms linking dietary fiber, gut microbiota and colon cancer prevention. World J Gastrointest Oncol. 2014;6(2):41–51.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hamer HM, Jonkers D, Venema K, et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther. 2008;27:104–19.

    Article  CAS  PubMed  Google Scholar 

  19. Meijer K, de Vos P, Priebe MG. Butyrate and other short-chain fatty acids as modulators of immunity: What relevance for health? Curr Opin Clin Nutr Metab Care. 2010;13(6):715–21.

    Article  CAS  PubMed  Google Scholar 

  20. Titgemeyer EC, Bourquin LD, Fahey GC, Garleb KA. Fermentability of various fiber sources by human fecal bacteria in vitro. Am J Clin Nutr. 1991;53:1418–24.

    Article  CAS  PubMed  Google Scholar 

  21. Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015;33(9):496–503.

    Article  CAS  PubMed  Google Scholar 

  22. Marchesi JR, Adams DH, Fava F, et al. The gut microbiota and host health: a new clinical frontier. Gut. 2015;65(2):330–9.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Deehan C, Walter J. The fiber gap and the disappearing gut microbiome: implications for human nutrition. Trends Endocrinol Metab. 2016;27(5):239–41.

    Article  CAS  PubMed  Google Scholar 

  24. Blaser MJ, Falkow S. What are the consequences of the disappearing human microbiota? Nat Rev Microbiol. 2009;7:887–94.

    Article  CAS  PubMed  Google Scholar 

  25. Jew S, Abumweis SS, Jones PJ. Evolution of the human diet: linking our ancestral diet to modern functional foods as a means of chronic disease prevention. J Med Food. 2009;12(5):925–34.

    Article  CAS  PubMed  Google Scholar 

  26. Dominianni C, Sinha R, Goedert JJ, et al. Sex, body mass index, and dietary fiber intake influence the human gut microbiome. PLoS One. 2015;10(4):e0124599. https://doi.org/10.1371/journal.pone.0124599.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. IOM (Institute of Medicine). Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein, and amino acids. 2002/2005. National Academies Press, Washington DC.

    Google Scholar 

  28. Milani C, Ferrario C, Turron F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46. https://doi.org/10.1111/jhn.12371.

    Article  CAS  PubMed  Google Scholar 

  29. Parekh PJ, Balart LA, Johnson DA. The influence of the gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin Transl Gastroenterol. 2015;6:e91. https://doi.org/10.1038/ctg.2015.16.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–50.

    Article  CAS  PubMed  Google Scholar 

  31. Conlon MA, Bird AR. The impact of diet and lifestyle on gut microbiota and human health. Forum Nutr. 2015;7:17–44.

    Google Scholar 

  32. Cummings JH, Englyst HN. Fermentation in the human large intestine and the available substrates. Am J Clin Nutr. 1987;45(5 suppl):1243–55.

    Article  CAS  PubMed  Google Scholar 

  33. Mehta RS, Nishihara R, Cao Y, et al. Association of dietary patterns with risk of colorectal cancer subtypes classified by Fusobacterium nucleatum in tumor tissue. JAMA Oncol. 2017. https://doi.org/10.1001/jamaoncol.2016.6374.

  34. Racine A, Carbonnel F, Chan SS, et al. Dietary patterns and risk of inflammatory bowel disease in Europe: results from the EPIC study. Inflamm Bowel Dis. 2016;2292:345–54. https://doi.org/10.1097/MIB.0000000000000638.

    Article  Google Scholar 

  35. Gutiérrez-Díaz I, Fernández-Navarro T, Sánchez B, et al. Mediterranean diet and faecal microbiota: a transversal study. Food Funct. 2016;;7(5):2347-56. https://doi.org/10.1039/c6fo00105j.

  36. GD W, Compher C, Chen EZ, et al. Comparative metabolomics in vegans and omnivores reveal constraints on diet-dependent gut microbiota metabolite production. Gut. 2016;65(1):63–72.

    Article  CAS  Google Scholar 

  37. De Filippis F, Pellegrini N, Vannini L, et al. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2015;65(11):1812–21. https://doi.org/10.1136/gutjnl-2015-309957.

    Article  PubMed  CAS  Google Scholar 

  38. Matijasic BB, Obermajer T, Lipoglavsek L, et al. Association of dietary type with fecal microbiota in vegetarians and omnivores in Slovenia. Eur J Nutr. 2014;53(4):1051–64.

    Article  CAS  PubMed  Google Scholar 

  39. Ou J, Carbonero F, Zoetendal EG, et al. Diet, microbiota, and microbial metabolites in colon cancer risk in rural Africans and African Americans. Am J Clin Nutr. 2013;98:111–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zimmer J, Lange B, Frick J-S, et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur J Clin Nutr. 2012;66(1):53–60.

    Article  CAS  PubMed  Google Scholar 

  41. Kabeerdoss J, Devi RS, Mary RR, et al. Faecal microbiota composition in vegetarians: comparison with omnivores in a cohort of young women in southern India. Br J Nutr. 2012;108:9544.

    Article  CAS  Google Scholar 

  42. GD W, Chen J, Hoffmann C, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105–8. https://doi.org/10.1126/science.1208344.3-957.

    Article  CAS  Google Scholar 

  43. Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64.

    Article  CAS  PubMed  Google Scholar 

  44. O’Keefe JD, Li JV, Lahti L, et al. Fat, fiber and cancer risk in African Americans and rural Africans. Nat Commun. 2015;6:6342. https://doi.org/10.1038/ncomms7342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505:559–63.

    Article  CAS  PubMed  Google Scholar 

  46. Klinder A, Shen Q, Heppel S, et al. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct. 2016;7:1788–96.

    Article  CAS  PubMed  Google Scholar 

  47. Heinritz SN, Weiss E, Eklund M, et al. Intestinal microbiota and microbial metabolites are changed in a pig model fed a high-fat/low-fiber or a low-fat/high-fiber diet. PLoS One. 2016;11(4):e0154329. https://doi.org/10.1371/journal.pone.0154329.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Wang Y, Ames NP, Tun HM, et al. High molecular weight barley β-glucan alters gut microbiota toward reduced cardiovascular disease risk. Front Microbiol. 2016;7:129. https://doi.org/10.3389/fmicb.2016.00129.

    PubMed  PubMed Central  Google Scholar 

  49. Martinez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. The. ISME J. 2013;7:269–80.

    Article  CAS  PubMed  Google Scholar 

  50. Carvalho-Wells AL, Helmolz K, Nodet C, et al. Determination of the in vivo prebiotic potential of a maize-based whole grain breakfast cereal: a human feeding study. Br J Nutr. 2010;104:1353–6.

    Article  CAS  PubMed  Google Scholar 

  51. Costabile A, Klinder A, Fava F, et al. Whole-grain wheat breakfast cereal has a prebiotic effect on the human gut microbiota: a double-blind, placebo-controlled, crossover study. Br J Nutr. 2008;99:110–20.

    Article  CAS  PubMed  Google Scholar 

  52. Reveles KR, Lee GC, Boyd NK, Frei CR. The rise in Clostridium difficile infection incidence among hospitalized adults in the United States: 2001-2010. Am J Infect Control. 2014;42:1028–32.

    Article  PubMed  Google Scholar 

  53. Van den Abbeele P, Verstraete W, Aidy SE, et al. Prebiotics, faecal transplants and microbial network units to stimulate biodiversity of the human gut microbiome. J Microbial Biotechnol. 2013;6(4):335–40. https://doi.org/10.1111/1751-7915.12049.

    Article  Google Scholar 

  54. Zhang I, Dong D, Jiang C, et al. Insight into alteration of gut microbiota in Clostridium difficile infection and asymptomatic C. difficile colonization. Anaerobe. 2015;34:1–7. https://doi.org/10.1016/j.anaerobe.2015.03.008.

    Article  PubMed  CAS  Google Scholar 

  55. May T, Mackie RI, Fahey GC, et al. Effect of fiber source on short-chain fatty acid production and on the growth and toxin production by Clostridium difficile. Scand J Gastroenterol. 1994;29(10):916–22.

    Article  CAS  PubMed  Google Scholar 

  56. Forssten SD, Roytio H, Ashley A, et al. The effect of polydextrose and probiotic lactobacilli in a Clostridium difficile infected human colonic model. Microb Ecol Health Dis. 2015;26:27988. https://doi.org/10.3402/mehd.v26.27988.

    PubMed  Google Scholar 

  57. Johnson LP, Walton GE, Psichas A, et al. Prebiotics modulate the effects of antibiotics on gut microbial diversity and functioning in vitro. Forum Nutr. 2015;7:4480–97.

    CAS  Google Scholar 

  58. Aleksandrova K, Romero-Mosquera B, Hernandez V. Diet, gut microbiome and epigenetics: emerging links with inflammatory bowel diseases and prospects for management and prevention, Nutrients. 2017;9:962.

    Google Scholar 

  59. Liu X, Wu Y, Li F, Zhang D. Dietary fiber intake reduces risk of inflammatory bowel disease: result from a meta-analysis. Nutr Res. 2016;2292:345–54; doi: 20.1097/MIB00000000000638.

    Google Scholar 

  60. Burkitt DP. Possible relationships between bowel cancer and dietary habits. Proc R Soc Med. 1971;64:964–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Bultman SJ. The microbiome and its potential as a cancer preventive intervention. Semin Oncol. 2016;43(1):97–106. https://doi.org/10.1053/j.seminoncol.2015.09.001.

    Article  CAS  PubMed  Google Scholar 

  62. Bultman SJ. Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Mol Nutr Food Res. 2017; 61(1); doi: 10.1002/mnfr.201500902.

    Google Scholar 

  63. Aune D, Chan DSM, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617. https://doi.org/10.1136/bmj.d6617.

    Article  PubMed  PubMed Central  Google Scholar 

  64. World Cancer Research Fund, American Institute of Cancer Research. Continuous Update Project. Colorectal Cancer 2011 Report. Food, Nutrition, Physical Activity, and the Prevention of Colorectal Cancer. London; 2011.

    Google Scholar 

  65. Kunzmann AT, Coleman HG, Huang W-Y, et al. Dietary fiber intake and risk of colorectal cancer and incident and recurrent adenoma in the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial. Am J Clin Nutr. 2015;102:881–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Chen HM, Y-N Y, Wang J-L, et al. Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. Am J Clin Nutr. 2013;97:1044–52.

    Article  CAS  PubMed  Google Scholar 

  67. Miller WC, Niederpruem MG, Wallace JP, Lindeman AK. Dietary fat, sugar, and fiber predict body fat content. J Am Diet Assoc. 1994;94:612–5.

    Article  CAS  PubMed  Google Scholar 

  68. Epstein LH, Gordy CC, Raynor HA, et al. Increasing fruit and vegetable intake and decreasing fat and sugar intake in families at risk for childhood obesity. Obes Res. 2001;9:171–8.

    Article  CAS  PubMed  Google Scholar 

  69. Epstein LH, Paluch RA, Beecher MD, Roemmich JN. Increasing healthy eating vs. reducing high energy-dense foods to treat pediatric obesity. Obesity (Silver Spring). 2008;16(2):318–26.

    Article  Google Scholar 

  70. Davis JN, Hodges VA, Gillham B. Normal-weight adults consume more fiber and fruit than their age- and height-matched overweight/obese counterparts. J Am Diet Assoc. 2006;106:833–40.

    Article  PubMed  Google Scholar 

  71. Davis JN, Alexander KE, Ventura EE, et al. Inverse relation between dietary fiber intake and visceral adiposity in overweight Latino youth. Am J Clin Nutr. 2009;90:1160–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Center for Disease Control and Prevention (CDC). Eat more weigh less? How to manage your weight without being hungry. http://www.cdc.gov/nccdphp/dnpa/nutrition/pdf/Energy_Density.pdf. Accessed May 21, 2016.

  73. Savage JS, Marini M, Birch LL. Dietary energy density predicts women’s weight change over 6 years. Am J Clin Nutr. 2008;88(3):677–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Bertoia ML, Mukamal KJ, Cahill LE, et al. Changes in intake of fruits and vegetables and weight change in United States men and women followed for up to 24 years: analysis from three prospective cohort studies. PLoS Med. 2015;12(9):e1001878. https://doi.org/10.1371/journalpmed.1001878.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Barczynska B, Bandurska K, Slizewska K, et al. Intestinal microbiota, obesity and prebiotics. Polish. J Microbiol. 2015;64(2):93–100.

    CAS  Google Scholar 

  76. Brahe LK, Astrup A, Larsen LH. Can we prevent obesity-related metabolic diseases by dietary modulation of the gut microbiota? Adv Nutr. 2016;7:90–101. https://doi.org/10.3945/an.115.010587.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Turnbaugh PJ, Hamady M, Yatsunenko T, et al. A core gut microbiome in obese and lean twins. Nature. 2009;457:480–4.

    Article  CAS  PubMed  Google Scholar 

  78. Cotillard A, Kennedy SP, Kong LC, et al. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–8.

    Article  CAS  PubMed  Google Scholar 

  79. Le Chatelier E, Nielsen T, Qin J, et al. Richness of human gut microbiome correlates with metabolic markers. Nature. 2013;500(7464):541–6.

    Article  PubMed  CAS  Google Scholar 

  80. Lozupone CA, Stombaugh JI, Gordon JI, et al. Diversity, stability and resilience of the human gut microbiota. Nature. 2012;489:220–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Miquel S, Martín R, Rossi O, et al. Faecalibacterium prausnitzii and human intestinal health. Curr Opin Microbiol. 2013;16:255–61.

    Article  CAS  PubMed  Google Scholar 

  82. Geurts L, Neyrinck AM, Delzenne NM, et al. Gut microbiota controls adipose tissue expansion, gut barrier and glucose metabolism: novel insights into molecular targets and interventions using prebiotics. Benefic Microbes. 2014;5(1):3–17.

    Article  CAS  Google Scholar 

  83. Karlsson FH, Tremaroli V, Nookaew I, et al. Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature. 2013;498:99–103.

    Article  CAS  PubMed  Google Scholar 

  84. Furet JP, Kong LC, Tap J, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low-grade inflammation markers. Diabetes. 2010;59:3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sánchez D, Miguel M, Aleixandre A. Dietary fiber, gut peptides, and adipocytokines. J Med Food. 2012;15(3):223–30. https://doi.org/10.1089/jmf.2011.0072.

    Article  PubMed  CAS  Google Scholar 

  86. Hjorth MF, Roager HM, Larsen TM, et al. Pre-tretment microbial Prevotella-to-Bacteroides ratio, determeines body fat loss success during 6-month randomized controlled diet intervention. Int J Obes. 2017; doi:10.1038/ijo.2017.220.

  87. Million M, Maraninchi M, Henry M, et al. Obesity-associated gut microbiota is enriched in Lactobacillus reuteri and depleted in Bifidobacterium animalis and Methanobrevibacter smithii. Int J Obes (Lond). 2012;36:817–25.

    Article  CAS  Google Scholar 

  88. Kalliomäki M, Collado MC, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8.

    PubMed  Google Scholar 

  89. Moreno-Indias I, Cardona F, Tinahones FJ, Queipo-Ortuño MI. Impact of the gut microbiota on the development of obesity and type 2 diabetes mellitus. Front Microbiol. 2014;5(190):1–10.

    Google Scholar 

  90. Fernandes J, Su W, Rahat-Rozenbloom S, et al. Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes. 2014;4:e121. https://doi.org/10.1038/nutd.2014.23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blaut M. Gut microbiota and energy balance: role in obesity. Proc Nutr Soc. 2015;74:227–34; doi: 10.1017/S0029665114001700.

    Google Scholar 

  92. Chambers ES, Morrison DJ, Frost G. Control of appetite and energy intake by SCFA: what are the potential underlying mechanisms? Proc Nutr Soc. 2015;74:328–336; doi: 10.1017/S0029665114001657.

    Google Scholar 

  93. Ley SH, Hamdy O, Mahan V, Prevention HFB. management of type 2 diabetes: dietary components and nutritional strategies. Lancet. 2014;383:1999–2007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tabák AG, Herder C, Rathmann W, et al. Prediabetes: A high-risk state for developing diabetes. Lancet. 2012;379(9833):2279–90.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Everard A, Cani PD. Diabetes, obesity and gut microbiota. Best Pract Res Clin Gastroenterol. 2013;27:73–83.

    Article  CAS  PubMed  Google Scholar 

  96. Murri M, Leiva I, Gomez-Zumaquero JM, et al. Gut microbiota in children with type 1 diabetes differs from that in healthy children: a case–control study. BMC Med. 2013;11:46.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Serino M, Fernandez-Real JM, Garcıa Fuentes E, et al. The gut microbiota profile is associated with insulin action in humans. Acta Diabetol. 2013;50:753–61.

    Article  CAS  PubMed  Google Scholar 

  98. Larsen N, Vogensen FK, van den Berg FW, et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One. 2010;5:e9085. https://doi.org/10.1371/journal.pone.0009085.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Qin J, Li Y, Cai Z, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490:55–60.

    Article  CAS  PubMed  Google Scholar 

  100. Nagpal R, Kumar M, Yadav AK, et al. Gut microbiota in health and dsiease: an overview focused on metabolic inflammation. Benef Microbes. 2016; 7(2):181–94.

    Google Scholar 

  101. Kim MS, Hwang SS, Park EJ, Bae JW. Strict vegetarian diet improves the risk factors associated with metabolic diseases by modulating gut microbiota and reducing intestinal inflammation. Environ Microbiol Rep. 2013;5:765–75.

    Article  CAS  PubMed  Google Scholar 

  102. Fallucca F, Fontana L, Fallucca S, Pianesi M. Gut microbiota and Ma-Pi 2 macrobiotic diet in the treatment of type 2 diabetes. World J Diabetes. 2015;6(3):403–11.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Karimi P, Farhangi MA, Sarmadi B, et al. The therapeutic potential of resistant starch in modulation of insulin resistance, endotoxemia, oxidative stress and antioxidant biomarkers in women with type 2 diabetes: a randomized controlled clinical trial. Ann Nutr Metab. 2016;68(2):85–93.

    Article  CAS  PubMed  Google Scholar 

  104. Bodinham CL, Smith L, Thomas EL, et al. Efficacy of increased resistant starch consumption in human type 2 diabetes. Endocr Connect. 2014;3:75–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Grundy SM. Metabolic syndrome pandemic. Arterioscler Thromb Vasc Biol. 2008;28:629–36.

    Article  CAS  PubMed  Google Scholar 

  106. Festi D, Schiumerini R, Eusebi LH, et al. Gut microbiota and metabolic syndrome. World J Gastroenterol. 2014;20(43):16079–94.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Martinez-Gonzalez MA, Martin-Calvo N. The major European dietary pattern and metabolic syndrome. Rev Endocr Metab Disord. 2013;14(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  108. Vetrani C, Costabile G, Luongo D, et al. Effects of whole-grain cereal foods on plasma short chain fatty acid concentrations in individuals with the metabolic syndrome. Nutrition. 2016;32:217–21.

    Article  CAS  PubMed  Google Scholar 

  109. Chambers ES, Viardot A, Psichas A, et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut. 2015;64(11):1744–54.

    Article  CAS  PubMed  Google Scholar 

  110. Yoon NR, Yoon S, Lee S-M. Rice cakes containing dietary fiber supplemented with or without Artemisia annua and Gynura procumbens Merr. alleviated the risk factors of metabolic syndrome. Clin Nutr Res. 2016;5:79–88.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Brahe LK, Le Chatelier E, Prifti E. Specific gut microbiota features and metabolic markers in postmenopausal women with obesity. Nutr Diabetes. 2015; e159. doi: https://doi.org/10.1038/nutd.2015.9.

  112. Galisteo M, Duarte J, Zarzuelo A. Effects of dietary fibers on disturbances clustered in the metabolic syndrome. J Nutr Biol. 2008;19:71–84.

    Article  CAS  Google Scholar 

  113. Rehman T. Role of the gut microbiota in age-related chronic inflammation. Endocr Metab Immune Disord Drug Targets. 2012;12:361–7.

    Article  CAS  PubMed  Google Scholar 

  114. Brüssow H. Microbiota and healthy ageing: observational and nutritional intervention studies. Microbial Biotechnol. 2013;6:326–34.

    Article  CAS  Google Scholar 

  115. O’Toole PWO, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5.

    Article  PubMed  CAS  Google Scholar 

  116. Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63(4):776–81.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987;237:143–9. https://doi.org/10.1126/science.3299702.

    Article  CAS  PubMed  Google Scholar 

  118. Stenman LK, Burcelin R, Lahtinen S. Establishing a causal link between gut microbes, body weight gain and glucose metabolism in humans -towards treatment with probiotics. Benefic Microbes. 2015;7(1):11–22.

    Article  Google Scholar 

  119. Cuervo A, Salazar N, Ruas-Madiedob P, et al. Fiber from a regular diet is directly associated with fecal short-chain fatty acid concentrations in the elderly. Nutr Res. 2013;33:811–6.

    Article  CAS  PubMed  Google Scholar 

  120. Jiao J, J-Y X, Zhang W, et al. Effect of dietary fiber on circulating C-reactive protein in overweight and obese adults: a meta-analysis of randomized controlled trials. Int J Food Sci Nutr. 2015;66(1):114–9.

    Article  CAS  PubMed  Google Scholar 

  121. Grooms KN, Ommerborn MJ, Quyen D, et al. Dietary fiber intake and cardiometabolic risk among US adults, NHANES 1999-2010. Am J Med. 2013;126(12):1059–67.

    Article  CAS  PubMed  Google Scholar 

  122. Cassidy A, De Vivo I, Liu Y, et al. Associations between diet, lifestyle factors, and telomere length in women. Am J Clin Nutr. 2010;91:1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Abdullah MM, Gyles CL, Marinangeli CP, et al. Cost-of-illness analysis reveals potential healthcare savings with reductions in type 2 diabetes and cardiovascular disease following recommended intakes of dietary fiber in Canada. Front Pharmacol. 2015;6:167. https://doi.org/10.3389/fphar.2015.00167.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Liu L, Wang S, Liu J. Fiber consumption and all-cause, cardiovascular, and cancer mortalities: A systematic review and meta-analysis of cohort studies. Mol Nutr Food Res. 2015;59:139–46.

    Article  CAS  PubMed  Google Scholar 

  125. Park Y, Subar AF, Hollenbeck A, et al. Dietary fiber intake and mortality in the NIH-AARP Diet and Health Study. Arch Intern Med. 2011;171(12):1061–8.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Chuang S-C, Norat T, Murphy N, et al. Fiber intake and total and cause-specific mortality in the European Prospective Investigation into Cancer and Nutrition cohort. Am J Clin Nutr. 2012;96:164–74.

    Article  CAS  PubMed  Google Scholar 

  127. Wei H, Gao Z, Liang R, et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2016;116(3):514–25. https://doi.org/10.1017/S0007114516001975.

    Article  CAS  PubMed  Google Scholar 

  128. Nguyen B, Bauman A, Gale J, et al. Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. Int J Behav Nutr Phys Act. 2016;13:9. https://doi.org/10.1186/s12966-016-0334-5.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Claesson MJ, Jeffery IB, Conde S. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–85.

    Article  CAS  PubMed  Google Scholar 

  130. Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci U S A. 2011;108(suppl. 1):4586–91.

    Article  CAS  PubMed  Google Scholar 

  131. Jeffery IB, Lynch DB, O’Toole PW. Composition and temporal stability of the gut microbiota in older persons. ISME J. 2016;10:170–82.

    Article  CAS  PubMed  Google Scholar 

  132. Biagi E, Franceschi C. Rampelli S, et al. Curr Bio: Gut microbiota and extreme longevity; 2016. https://doi.org/10.1016/j.cub.2016.04.016

    Google Scholar 

  133. Wang F, Yu T, Huang G, Cai D. Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol. 2015;25(8):1195–204.

    Article  CAS  PubMed  Google Scholar 

  134. Biagi E, Nylund L, Candela M, et al. Through ageing, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One. 2010;5(5):e10667. https://doi.org/10.1371/journal.pone.0010667.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Mariat D, Firmesse O, Levenez F, et al. The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol. 2009;9:123. https://doi.org/10.1186/1471-2180-9-123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. van Tongeren SP, Slaets JP, Harmsen HJ, Welling GW. Fecal microbiota composition and frailty. Appl Environ Microbiol. 2005;71:6438–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  137. Bartosch S, Fite A, Macfarlane GT, McMurdo ME. Characterization of bacterial communities in feces from healthy elderly volunteers and hospitalized elderly patients by using real-time PCR and effects of antibiotic treatment on the fecal microbiota. Appl Environ Microbiol. 2004;70:3575–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendices

Appendix AComparison of Western and Healthy Dietary Patterns per 2000 kcal (Approximated Values)

Components

Western dietary pattern (US)

USDA base pattern

DASH diet pattern

Healthy Mediterranean pattern

Healthy vegetarian pattern (Lact-ovo based)

Vegan pattern

Emphasizes

Refined grains, low fiber foods, red meats sweets, and solid fats

Vegetables, fruit, whole-grain, and low-fat milk

Potassium rich vegetables, fruits, and low-fat milk products

Whole grains, vegetables, fruit, dairy products, olive oil, and moderate wine

Vegetables, fruit, whole-grains, legumes, nuts, seeds, milk products, and soy foods

Plant foods: vegetables, fruits, whole grains, nuts, seeds, and soy foods

Includes

Processed meats, sugar sweetened beverages, and fast foods

Enriched grains, lean meat, fish, nuts, seeds, and vegetable oils

Whole-grain, poultry, fish, nuts, and seeds

Fish, nuts, seeds, and pulses

Eggs, non-dairy milk alternatives, and vegetable oils

Non-dairy milk alternatives

Limits

Fruits and vegetables, whole-grains

Solid fats and added sugars

Red meats, sweets, and sugar-sweetened beverages

Red meats, refined grains, and sweets

No red or white meats, or fish; limited sweets

No animal products

Estimated Nutrients/Components

Carbohydrates (% Total kcal)

51

51

55

50

54

57

Protein (% Total kcal)

16

17

18

16

14

13

Total fat (% Total kcal)

33

32

27

34

32

30

Saturated fat (% Total kcal)

11

8

6

8

8

7

Unsat. fat (% Total kcal)

22

25

21

24

26

25

Fiber (g)

16

31

29+

31

35+

40+

Potassium (mg)

2800

3350

4400

3350

3300

3650

Vegetable oils (g)

19

27

25

27

19–27

18–27

Sodium (mg)

3600

1790

1100

1690

1400

1225

Added sugar (g)

79 (20 tsp.)

32 (8 tsp.)

12 (3 tsp.)

32 (8 tsp.)

32 (8 tsp.)

32 (8 tsp.)

Plant Food Groups

Fruit (cup)

≤1.0

2.0

2.5

2.5

2.0

2.0

Vegetables (cup)

≤1.5

2.5

2.1

2.5

2.5

2.5

Whole-grains (oz.)

0.6

3.0

4.0

3.0

3.0

3.0

Legumes (oz.)

−

1.5

0.5

1.5

3.0

3.0+

Nuts/Seeds (oz.)

0.5

0.6

1.0

0.6

1.0

2.0

Soy products (oz.)

0.0

0.5

−

−

1.1

1.5

U.S. Department of Agriculture, Agriculture Research Service, Nutrient Data Laboratory. 2014. USDA National Nutrient Database for Standard Reference, Release 27. https://www.ars.usda.gov/nutrientdata. Accessed 17 February 2015.

Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Appendix E-3.7: Developing vegetarian and Mediterranean-style food patterns. 2015;1–9.

U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office. 2010; Table B2.4; http://www.choosemyplate.gov/ Accessed 8.22.2015.

Appendix BFifty High Fiber Whole or Minimally Processed Plant Foods Ranked by Amount of Fiber per Standard Food Portion Size

Food

Standard portion size

Dietary fiber (g)

Calories (kcal)

Energy density (calories/g)

High fiber bran ready-to-eat-cereal

1/3–3/4 cup (30 g)

9.1–14.3

60–80

2.0–2.6

Navy beans, cooked

1/2 cup cooked (90 g)

9.6

127

1.4

Small white beans, cooked

1/2 cup (90 g)

9.3

127

1.4

Shredded wheat ready-to-eat cereal

1–1 1/4 cup (50–60 g)

5.0–9.0

155–220

3.2–3.7

Black bean soup, canned

1/2 cup (130 g)

8.8

117

0.9

French beans, cooked

1/2 cup (90 g)

8.3

114

1.3

Split peas, cooked

1/2 cup (100 g)

8.2

114

1.1

Chickpeas (Garbanzo) beans, canned

1/2 cup (120 g)

8.1

176

1.4

Lentils, cooked

1/2 cup (100 g)

7.8

115

1.2

Pinto beans, cooked

1/2 cup (90 g)

7.7

122

1.4

Black beans, cooked

1/2 cup (90 g)

7.5

114

1.3

Artichoke, global or French, cooked

1/2 cup (84 g)

7.2

45

0.5

Lima beans, cooked

1/2 cup (90 g)

6.6

108

1.2

White beans, canned

1/2 cup (130 g)

6.3

149

1.1

Wheat bran flakes ready-to-eat cereal

3/4 cup (30 g)

4.9–5.5

90–98

3.0–3.3

Pear with skin

1 medium (180 g)

5.5

100

0.6

Pumpkin seeds. Whole, roasted

1 ounce (about 28 g)

5.3

126

4.5

Baked beans, canned, plain

1/2 cup (125 g)

5.2

120

0.9

Soybeans, cooked

1/2 cup (90 g)

5.2

150

1.7

Plain rye wafer crackers

2 wafers (22 g)

5.0

73

3.3

Avocado, Hass

1/2 fruit (68 g)

4.6

114

1.7

Apple, with skin

1 medium (180 g)

4.4

95

0.5

Green peas, cooked (fresh, frozen, canned)

1/2 cup (80 g)

3.5–4.4

59–67

0.7–0.8

Refried beans, canned

1/2 cup (120 g)

4.4

107

0.9

Mixed vegetables, cooked from frozen

1/2 cup (45 g)

4.0

59

1.3

Raspberries

1/2 cup (65 g)

3.8

32

0.5

Blackberries

1/2 cup (65 g)

3.8

31

0.4

Collards, cooked

1/2 cup (95 g)

3.8

32

0.3

Soybeans, green, cooked

1/2 cup (75 g)

3.8

127

1.4

Prunes, pitted, stewed

1/2 cup (125 g)

3.8

133

1.1

Sweet potato, baked

1 medium (114 g)

3.8

103

0.9

Multi-grain bread

2 slices regular (52 g)

3.8

140

2.7

Figs, dried

1/4 cup (about 38 g)

3.7

93

2.5

Potato baked, with skin

1 medium (173 g)

3.6

163

0.9

Popcorn, air-popped

3 cups (24 g)

3.5

93

3.9

Almonds

1 ounce (about 28 g)

3.5

164

5.8

Whole wheat spaghetti, cooked

1/2 cup (70 g)

3.2

87

1.2

Sunflower seed kernels, dry roasted

1 ounce (about 28 g)

3.1

165

5.8

Orange

1 medium (130 g)

3.1

69

0.5

Banana

1 medium (118 g)

3.1

105

0.9

Oat bran muffin

1 small (66 g)

3.0

178

2.7

Vegetable soup

1 cup (245 g)

2.9

91

0.4

Dates

1/4 cup (about 38 g)

2.9

104

2.8

Pistachios, dry roasted

1 ounce (about 28 g)

2.8

161

5.7

Hazelnuts or filberts

1 ounce (about 28 g)

2.7

178

6.3

Peanuts, oil roasted

1 ounce (about 28 g)

2.7

170

6.0

Quinoa, cooked

1/2 cup (90 g)

2.7

92

1.0

Broccoli, cooked

1/2 cup (78 g)

2.6

27

0.3

Potato baked, without skin

1 medium (145 g)

2.3

145

1.0

Baby spinach leaves

3 ounces (90 g)

2.1

20

0.2

Blueberries

1/2 cup (74 g)

1.8

42

0.6

Carrot, raw or cooked

1 medium (60 g)

1.7

25

0.4

Dahl WJ, Stewart ML. Position of the Academy of Nutrition and Dietetics: health implications of dietary fiber. J Acad Nutr Diet. 2015;115:1861–1870.

Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes, and health: current status and trends. 2015;97, 98; Table D1.8.

Slavin, J.L. Position of the American Dietetic Association: Health implications of dietary fiber. J. Am. Diet. Assoc. 2008;108:1716–1731.

U.S. Department of Agriculture and U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2010. 7th Edition, Washington, DC: U.S. Government Printing Office. 2010; Table B2.4; http://www.choosemyplate.gov/ Accessed 8.22.2015.

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dreher, M.L. (2018). Fiber-Rich Dietary Patterns and Colonic Microbiota in Aging and Disease. In: Dietary Patterns and Whole Plant Foods in Aging and Disease. Nutrition and Health. Humana Press, Cham. https://doi.org/10.1007/978-3-319-59180-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-59180-3_4

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-59179-7

  • Online ISBN: 978-3-319-59180-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics