Whole Plant Foods in Aging and Disease

  • Mark L. Dreher
Chapter
Part of the Nutrition and Health book series (NH)

Abstract

The rate and quality of the aging processes can be modified by consuming healthy diets overall and specific types of uniquely healthy foods. Healthy dietary guidelines generally recommend eating: 2 1/2 cups of a variety of vegetables/day; 2 cups of fruits, especially whole fruits/day; 6 servings of total grains at ≥3 servings of whole grains/day and ≤3 servings of refined grains/day, ≥4 weekly servings of legumes (dietary pulses or soy), and/or ≥5 weekly servings of nuts, and limiting consumption of red or processed meats, added saturated and trans-fat, sugar or sodium for improved odds for healthy aging and reduced chronic disease and premature mortality risk. Whole plant foods range widely in their health effects because of their variation in level and type of fiber, nutrients and phytochemicals, which can have differential effects on aging, chronic disease risk, cognitive function and longevity by their impact on weight regulation, lipoprotein concentrations and function, blood pressure, glucose-insulin homeostasis, oxidative stress, inflammation, endothelial health, hepatic function, adipocyte metabolism, visceral adiposity, brain neurochemistry and the microbiota ecosystem. For whole-grains, β-glucan-rich oats and barley lower total and LDL-cholesterol better than other cereal grains and whole-grain bread tends to be more beneficial than white bread in controlling weight gain and abdominal fat. For fruits and non-starchy vegetables, low energy dense and flavonoid and/or carotenoid rich varieties including apples, pears, berries, citrus fruits, cruciferous vegetables, and green leafy vegetables are especially associated with improved odds of healthy aging, cognitive performance and weight control, and reduced risk of chronic disease and premature death. Legumes (dietary pulses or soy) are associated with reduced risk of mortality, weight gain, and chronic disease. All nuts tend to have similar effects on managing body weight, and glycemic, lipoprotein and inflammatory profiles, but among nuts walnuts appear to be uniquely effective in promoting better vascular endothelial function such as flow mediated dilation , which helps to reduce the rate of vascular aging.

Keywords

Whole-plant foods Healthy aging Mortality risk Cardiovascular disease Cancer Type 2 diabetes Cognitive performance Lipoproteins Blood pressure Cancer Stroke Telomeres Whole-grains Fruits Vegetables Legumes Soybeans Nuts 

References

  1. 1.
    Olshansky SJ. Has the rate of human aging already been modified? Cold Spring Harb Perspect Med. 2015;5.  https://doi.org/10.1101/cshperspect.a025965.
  2. 2.
    Olshansky SJ, Hayflick L, Carnes BA. No truth to the fountain of youth. Sci Am. 2008;14:98–102.Google Scholar
  3. 3.
    WHO/FAO. Joint Expert Consultation on Diet, Nutrition and the Prevention of Chronic Diseases. Diet. Nutrition and the Prevention of Chronic Diseases. WHO Technical Series. 2003:916.Google Scholar
  4. 4.
    Fontana L, Hu FB. Optimal body weight for health and longevity: bridging basic, clinical, and population research. Aging Cell. 2014;13:391–400.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Newman AB. Is the onset of obesity the same as aging? Proc Natl Acad U S A. 2015;112(52):E7163.  https://doi.org/10.1073/pnas. 1515367112.CrossRefGoogle Scholar
  6. 6.
    Beltran-Sanchez H, Soneji S, Crimmins EM. Past, present, and future of healthy life expectancy. Cold Spring Harb Perspect Med. 2015;5.  https://doi.org/10.1101/cshperspect.a025957.
  7. 7.
    World Health Organization. WHO global status report on noncommunicable diseases 2010. Geneva: World Health Organization Press; 2010.Google Scholar
  8. 8.
    Avendano M, Kawachi I. Why do Americans have shorter life expectancy and worse health than people in other high-income countries? Annu Rev Public Health. 2014;35:307–25.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Rowe JW, Kahn RL. Human aging: usual and successful. Science. 1987;237:143–9.  https://doi.org/10.1126/science.3299702. PubMedCrossRefGoogle Scholar
  10. 10.
    Micha R, Khatibzadeh S, Shi P, et al. Global, regional and national consumption of major food groups in 1990 and 2010: a systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open. 2015;5(9):e008705.  https://doi.org/10.1136/bmjopen-2015-008705. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Dietary Guidelines Advisory Committee. Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 1: Food and nutrient intakes, and health: current status and trends 2015. p. 1–78.Google Scholar
  12. 12.
  13. 13.
    Wu X, Beecher GR, Holden JM, et al. Lipophilic and hydrophilic antioxidant capacities of common foods in the United States. J Agric Food Chem. 2004;52:4026–37.PubMedCrossRefGoogle Scholar
  14. 14.
    Ros E, Hu FB. Consumption of plant seeds and cardiovascular health epidemiological and clinical trial evidence. Circulation. 2013;128:553–65.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Slavin JL, Lloyd B. Health benefits of fruits and vegetables. Adv Nutr. 2012;3:506–16.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Rebello CJ, Greenway FL, Finley JW. A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev. 2014;15:392–407.PubMedCrossRefGoogle Scholar
  17. 17.
    Gebhardt SE, Thomas R. Nutritive value of foods. Home and Garden Bulletin, Agriculture Research Service, United States Department of Agriculture, 2002,72:36–68Google Scholar
  18. 18.
    Dietary Guidelines Advisory Committee (DGAC). Scientific Report. Advisory Report to the Secretary of Health and Human Services and the Secretary of Agriculture. Part D. Chapter 2: Dietary patterns, foods and nutrients and health outcomes 2015. p. 1–35.Google Scholar
  19. 19.
    Mozaffarian D. Dietary and policy priorities for cardiovascular disease, diabetes, and obesity. A comprehensive review. Circulation. 2017;133(2):187–225.  https://doi.org/10.1161/CIRCULATIONAHA.11519.018585. CrossRefGoogle Scholar
  20. 20.
    Palmer AK, Tchkonia T, LeBrasseur NK, et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes. 2015;64:2289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Satija A, Bhupathiraju SN, Rimm EB, et al. Plant-based dietary patterns and incidence of type 2 diabetes in US men and women: results from three prospective cohort studies. PLoS Med. 2016;13(6):e1002039.  https://doi.org/10.1371/journal.pmed.1002039. PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Micha R, Peñalvo JL, Cudhea F, et al. Association between dietary factors and mortality from heart disease, stroke, and type 2 diabetes in the United States. JAMA. 2017;317(9):912–24.  https://doi.org/10.1001/jama.2017.0947. PubMedCrossRefGoogle Scholar
  23. 23.
    William PG. Evaluation of the evidence between consumption of refined grains and health outcomes. Nutr Rev. 2012;70(2):80–99.CrossRefGoogle Scholar
  24. 24.
    Seal CJ, Brownlee IA. Whole-grain foods and chronic disease: evidence from epidemiological and intervention studies. Proc Nutr Soc. 2015;74:313–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Slavin J. Why whole grains are protective: biological mechanisms. Proc Nutr Soc. 2003;62:129–34.PubMedCrossRefGoogle Scholar
  26. 26.
    Cho SS, Qi L, Fahey Jr GC, Klurfeld DM. Consumption of cereal fiber, mixtures of whole grains and bran, and whole grains and risk reduction in type 2 diabetes, obesity, and cardiovascular disease. Am J Clin Nutr 2013;98: 594–619.Google Scholar
  27. 27.
    McGill CR, Fulgoni VL III, Devareddy L. Ten-year trends in fiber and whole grain intakes and food sources for the United States population: National Health and Nutrition Examination Survey 2001-2010. Forum Nutr. 2015;7:1119–30.Google Scholar
  28. 28.
    Aune D, Keum N, Giovannucci E, et al. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2016;353:i2716.  https://doi.org/10.1136/bmj.i2716. PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Wei H, Gao Z, Liang R, et al. Whole-grain consumption and the risk of all-cause, CVD and cancer mortality: a meta-analysis of prospective cohort studies. Br J Nutr. 2016;116(3):514–25.  https://doi.org/10.1017/S0007114516001975. PubMedCrossRefGoogle Scholar
  30. 30.
    Zong G, Gao A, FB H, Sun Q. Whole grain intake and mortality from all causes, cardiovascular disease, and cancer a meta-analysis of prospective cohort studies. Circulation. 2016;133:2370–80.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Li B, Zhang G, Tan M, et al. Consumption of whole grains in relation to mortality from all causes, cardiovascular disease, and diabetes. Dose–response meta-analysis of prospective cohort studies. Medicine. 2016;95:33(e4229); doi: org/10.1097/MD.00000000000429.Google Scholar
  32. 32.
    Benisi-Kohansal S, Saneei P, Salehi-Marzijarani M, et al. Whole-grain intake and mortality from all causes, cardiovascular disease, and cancer: a systematic review and dose-response meta-analysis of prospective cohort studies. Adv Nutr. 2016;7:1052–65.  https://doi.org/10.3945/an.11615. PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Xu M, Huang T, Lee AM, et al. Ready-to-eat cereal consumption with total and cause -specific mortality: prospective analysis of 367,442 individuals. J Am Coll Nutr. 2016;35(3):217–23.PubMedCrossRefGoogle Scholar
  34. 34.
    Wu H, Flint AJ, Qi Q. Association between dietary whole grain intake and risk of mortality: two large prospective studies in US men and women. JAMA Intern Med. 2015;175(3):373–84.PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Huang T, Xu M, Lee A, et al. Consumption of whole grains and cereal fiber and total and cause-specific mortality: prospective analysis of 367,442 individuals. BMC Med. 2015;13:59.  https://doi.org/10.1186/s12916-015-0338-z. PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Johnsen NF, Frederiksen K, Christensen J, et al. Whole-grain products and whole-grain types are associated with lower all-cause and cause-specific mortality in the Scandinavian HELGA cohort. Br J Nutr. 2015;114:608–23.PubMedCrossRefGoogle Scholar
  37. 37.
    He M, van Dam RM, Rimm E, et al. Whole grain, cereal fiber, bran, and germ intake and the risks of all-cause and CVD-specific mortality among women with type 2 diabetes. Circulation. 2010;121(20):2162–8.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Hollænder PLB, Ross AB, Kristensen M. Whole-grain and blood lipid changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr. 2015;102(3):556–72.  https://doi.org/10.3945/ajcn.115.109165. PubMedCrossRefGoogle Scholar
  39. 39.
    Ye EQ, Chacko SA, Chou EL, et al. Greater whole-grain intake is associated with lower risk of type 2 diabetes, cardiovascular disease, and weight gain. J Nutr. 2012;142:1304–13.PubMedCrossRefGoogle Scholar
  40. 40.
    Kelly SAM, Summerbell CD, Brynes A, et al. Wholegrain cereals for coronary heart disease. Cochrane Database Syst Rev. 2007; 2:CD005051; doi:10.1002/14651858.CD005051.pub2.Google Scholar
  41. 41.
    Flint AJ, FB H, Glynn RJ, et al. Whole grains and incident hypertension in men. Am J Clin Nutr. 2009;90:493–8.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Kirwan JP, Malin SK, Scelsi AR, et al. Whole-grain diet reduces cardiovascular risk factors in overweight and obese adults: a randomized controlled trial. J Nutr. 2016;146:2244–51.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Tighe P, Duthie G, Vaughan N, et al. Effect of increased consumption of whole-grain foods on blood pressure and other cardiovascular risk markers in healthy middle-aged persons: a randomized controlled trial. Am J Clin Nutr. 2010;92:733–40.PubMedCrossRefGoogle Scholar
  44. 44.
    Chen J, Huang Q, Shi W, et al. Meta-analysis of the association between whole and refined grain consumption and stroke risk based on prospective cohort studies, Asia Pacific. J Public Health. 2016;28(7):563–75.Google Scholar
  45. 45.
    Fang L, Li W, Zhang W, et al. Association between whole grain intake and stroke risk: evidence from meta-analysis. Int J Clin Exp Med. 2015;8(9):16978–83.PubMedPubMedCentralGoogle Scholar
  46. 46.
    Liu S, Manson JE, Stampfer MJ, et al. Whole grain consumption and risk of ischemic stroke in women. JAMA. 2000;284(12):1534–40.PubMedCrossRefGoogle Scholar
  47. 47.
    Aune D, Norat T, Romundstad P, Vatten LJ. Whole grain and refined grain consumption and the risk of type 2 diabetes: a systematic review and dose-response meta-analysis of cohort studies. Eur J Epidemiol. 2013;28:845–58.  https://doi.org/10.1007/s10654-013-9852-5. PubMedCrossRefGoogle Scholar
  48. 48.
    Chanson-Rolle A, Meynier A, Aubin F, et al. Systematic review and meta-analysis of human studies to support a quantitative recommendation for whole grain intake in relation to type 2 diabetes. PLoS One. 2015;10(6):e0131377.  https://doi.org/10.1371/journal.pone.0131377. PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Sun Q, Spiegelman D, van Dam RM, et al. White rice, brown rice and risk of type 2 diabetes in US men and women. Arch Intern Med. 2010;170(11):961–9.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    de Munter JSL, Hu FB, Spiegelman D, et al. Whole grain, bran, and germ intake and risk of type 2 diabetes: a prospective cohort study and systematic review. PLoS Med. 2007;4(8):e261.  https://doi.org/10.1371/journal.pmed.0040261.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Aune D, Chan DSM, Lau R, et al. Dietary fibre, whole grains, and risk of colorectal cancer: systematic review and dose-response meta-analysis of prospective studies. BMJ. 2011;343:d6617.  https://doi.org/10.1136/bmj.d6617.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Haas P, Machado MJ, Anton AA, et al. Effectiveness of whole grain consumption in the prevention of colorectal cancer: meta-analysis of cohort studies. Int J Food Sci Nutr. 2009;60(Suppl 6):1–13.PubMedCrossRefGoogle Scholar
  53. 53.
    Kyrø C, Skeie G, Loft S, et al. Intake of whole grains from different cereal and food sources and incidence of colorectal cancer in the Scandinavian HELGA Cohort. Cancer Causes Control. 2013;24:1363–74.  https://doi.org/10.1007/s10552-013-0215-z. PubMedCrossRefGoogle Scholar
  54. 54.
    Milani C, Ferrario C, Turroni F, et al. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet. 2016;29(5):539–46.  https://doi.org/10.1111/jhn.12371. PubMedCrossRefGoogle Scholar
  55. 55.
    De Angelis M, Montemurno E, Vannini L, et al. Effect of whole-grain barley on the human fecal microbiota and metabolome. Appl Environ Microbiol. 2015;81:7945–56.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    vel Szic KS, Declerck K, Vidaković M, Vanden Berghe W. From inflammaging to healthy aging by dietary lifestyle choices: is epigenetics the key to personalized nutrition? Clin Epigenetics. 2015; 7:33. doi: 10.1186/s13148-015-0068-2.Google Scholar
  57. 57.
    de Heredia FP, Gomez-Martınez S, Marcos A. Chronic and degenerative diseases, obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71:332–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Lefevre M, Jonnalagadda S. Effect of whole grains on markers of subclinical inflammation. Nutr Rev. 2012;70(7):387–96.PubMedCrossRefGoogle Scholar
  59. 59.
    Puzianowska-Kuźnicka M, Owczarz M, Wieczorowska-Tobis K, et al. Interleukin-6 and C-reactive protein, successful aging, and mortality: The PolSenior Study. Immun Ageing. 2016;13:21.  https://doi.org/10.1186/s12979-016-0076-x.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Forum Nutr. 2013;5:234–52.Google Scholar
  61. 61.
    Arora T, Backhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280(4):339–49.  https://doi.org/10.1111/joim.12508. PubMedCrossRefGoogle Scholar
  62. 62.
    Keenan MJ, Marco ML, Ingram DK, Martin RJ. Improving health span via changes in gut microbiota and fermentation. Age. 2015;37(5):98.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    O’Toole PWO, Jeffery IB. Gut microbiota and aging. Science. 2015;350(6265):1214–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J Am Geriatr Soc. 2015;63(4):776–81.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Claesson MJ, Jeffery IB, Conde S. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–85.PubMedCrossRefGoogle Scholar
  66. 66.
    Tuohy KM, Conterno L, Gasperotti M, Viola R. Up-regulating the human intestinal microbiome using whole plant foods, polyphenols, and/or fiber. J Agric Food Chem. 2012;60:8776–82.PubMedCrossRefGoogle Scholar
  67. 67.
    Tap J, Furet JP, Bensaada M, et al. Gut microbiota richness promotes its stability upon increased dietary fibre intake in healthy adults. Environ Microbiol. 2015;17(12):4954–64.PubMedCrossRefGoogle Scholar
  68. 68.
    Vanegas SM, Meydani M, Barnett JB, et al. Substituting whole grains for refined grains in a 6-wk randomized trial has a modest effect on gut microbiota and immune and inflammatory markers of healthy adults. Am J Clin Nutr. 2017;105(3):653–0.  https://doi.org/10.3945/ajcn.116.146928. CrossRefGoogle Scholar
  69. 69.
    Martınez I, Lattimer JM, Hubach KL, et al. Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J. 2013;7:269–80.PubMedCrossRefGoogle Scholar
  70. 70.
    Price RK, Wallace JMW, Hamill LL, et al. Evaluation of the effect of wheat aleurone-rich foods on markers of antioxidant status, inflammation and endothelial function in apparently healthy men and women. Br J Nutr. 2012;108:1644–51.PubMedCrossRefGoogle Scholar
  71. 71.
    Sepe A, Tchkonia T, Thomou T, et al. Aging and regional differences in fat cell progenitors - a mini-review. Gerontology. 2011;57:66–75.  https://doi.org/10.1159/000279755. PubMedCrossRefGoogle Scholar
  72. 72.
    Karl JP, Saltzman E. The role of whole grains in body weight regulation. Adv Nutr. 2012;3:697–707.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pol K, Christensen R, Bartels EM, et al. Whole grain and body weight changes in apparently healthy adults: a systematic review and meta-analysis of randomized controlled studies. Am J Clin Nutr. 2013;98:872–84.PubMedCrossRefGoogle Scholar
  74. 74.
    Serra-Majem L, Bautista-Castaño I. Relationship between bread and obesity. Br J Nutr. 2015;113:S29–35.  https://doi.org/10.1017/S0007114514003249. PubMedCrossRefGoogle Scholar
  75. 75.
    McKeown M, Troy LM, Jacques PF, et al. Whole- and refined-grain intakes are differentially associated with abdominal visceral and subcutaneous adiposity in healthy adults: the Framingham Heart Study. Am J Clin Nutr. 2010;92:1165–71.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Karl JP, Meydani M, Barnett JB, et al. Substituting whole grains for refined grains in a 6-wk randomized trial favorably affects energy-balance metrics in healthy men and postmenopausal women. Am J Clin Nutr. 2017;105(3):589–99.  https://doi.org/10.3945/ajcn.116.139683. PubMedCrossRefGoogle Scholar
  77. 77.
    Alfakry H, Malle E, Koyani CN, et al. Neutrophil proteolytic activation cascades: a possible mechanistic link between chronic periodontitis and coronary heart disease. Innate Immun. 2016;22(1):85–99.  https://doi.org/10.1177/1753425915617521. PubMedCrossRefGoogle Scholar
  78. 78.
    Nielsen SJ, Trak-Fellermeier MA, Joshipura K, Dye BA. Dietary fiber intake is inversely associated with periodontal disease among US adults. J Nutr. 2016;146:2530–6.  https://doi.org/10.3945/jn.116.237065. PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Merchant AT, Pitiphat W, Franz M, Joshipura KJ. Whole-grain and fiber intakes and periodontitis risk in men. Am J Clin Nutr. 2006;83:1395–400.PubMedCrossRefGoogle Scholar
  80. 80.
    World Health Organization. Diet, nutrition, and the prevention of chronic diseases. Geneva: World Health Organization; 1990. http://www.who.int/nutrition/publications/obesity/WHO_TRS_797/en/index.html. Accessed 16 April 2015Google Scholar
  81. 81.
    Bertoia ML, Rimm EB, Mukamal KJ, et al. Dietary flavonoid intake and weight maintenance: three prospective cohorts of 124,086 US men and women followed for up to 24 years. BMJ. 2016;352:i17.  doi.org/10.1136/bmj.i17 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Aune D, Giovannucci E, Boffetta P, et al. Fruit and vegetable intake and the risk of cardiovascular disease, total cancer and all-cause mortality-a systematic review and dose response meta-analysis of prospective studies. Int J Epidemiol. 2017:1–28.  https://doi.org/10.1093/ije/dyw319.
  83. 83.
    Wang X, Ouyang Y, Liu J. Fruit and vegetable consumption and mortality from all causes, cardiovascular disease, and cancer: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ. 2014;349:g4490.  https://doi.org/10.1136/bmj.g4490. PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Bellavia A, Stilling F, Wolk A. High red meat intake and all-cause cardiovascular and cancer mortality: is the risk modified by fruit and vegetable intake? Am J Clin Nutr. 2016;104:1137–43.PubMedCrossRefGoogle Scholar
  85. 85.
    Nguyen B, Bauman A, Gale E, et al. Fruit and vegetable consumption and all-cause mortality: evidence from a large Australian cohort study. Int J Behav Nutr Phys Act. 2016;13:9.  https://doi.org/10.1186/s12966-016-0334-S.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Oyebode O, Gordon-Dseagu V, Walker A, Mindell JS. Fruit and vegetable consumption and all-cause, cancer and CVD mortality: analysis of health survey for England data. J Epidemiol Community Health. 2014;68:856–62.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Leenders M, Sluijs I, Ros MM, et al. Fruit and vegetable consumption and mortality European Prospective Investigation into Cancer and Nutrition. Am J Epidemiol. 2013;178(4):590–602.PubMedCrossRefGoogle Scholar
  88. 88.
    Bellavia A, Larsson SC, Bottai M, et al. Fruit and vegetable consumption and all-cause mortality: a dose response analysis. Am J Clin Nutr. 2013;98:454–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Zhang X, Shu X-O, Xiang Y-B, et al. Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr. 2011;94:240–6.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Huang H, Chen G, Liao D, et al. Effects of berries consumption on cardiovascular risk factors: a meta-analysis with trial sequential analysis of randomized controlled trials. Sci Rep. 2016;6:23625.  https://doi.org/10.1038/srep23625. PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Gan Y, Tong X, Li L, et al. Consumption of fruit and vegetable and risk of coronary heart disease: a meta-analysis of prospective cohort studies. Int J Cardiol. 2015;183:129–37.PubMedCrossRefGoogle Scholar
  92. 92.
    Zhan J, Liu Y-J, Cai L-B, et al. Fruit and vegetable consumption and risk of cardiovascular disease: a meta-analysis of prospective cohort studies. Crit Rev Food Sci Nutr. 2015.  https://doi.org/10.1080/10408398.2015.1008980.
  93. 93.
    Hartley L, Igbinedion E, Holmes J, et al. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Systematic Rev. 2013;6:CD009874; doi: 10.1002/14651858.CD009874.pub2.Google Scholar
  94. 94.
    Larsson SC, Wolk A. Potato consumption and risk of cardiovascular disease: 2 prospective cohort studies. Am J Clin Nutr. 2016;104:1245–53.PubMedCrossRefGoogle Scholar
  95. 95.
    Miedema MD, Andrew Petrone A, Shikany JM, et al. Association of fruit and vegetable consumption during early adulthood with the prevalence of coronary artery calcium after 20 years of follow-up. The Coronary Artery Risk Development in Young Adults (CARDIA) Study. Circulation. 2015;132:1990–8.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Bhupathiraju SN, Wedick NM, Pan A, et al. Quantity and variety in fruit and vegetable intake and risk of coronary heart disease. Am J Clin Nutr. 2013;98:1514–23.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Buil-Cosiales P, Toledo E, Salas-Salvadó J, et al. Association between dietary fibre intake and fruit, vegetable or whole-grain consumption and the risk of CVD: results from the PREvención con Dieta MEDiterránea (PREDIMED) trial. Br J Nutr. 2016;116(3):534–46.  https://doi.org/10.1017/S0007114516002099. PubMedCrossRefGoogle Scholar
  98. 98.
    Li B, Wang L, Zhang D. Fruit and vegetable consumption and risk of hypertension: a meta-analysis. J Clin Hypertens (Greenwich). 2016;18(5):468–76.CrossRefGoogle Scholar
  99. 99.
    Wu L, Sun D, He Y. Fruit and vegetable consumption and incident hypertension: dose-response meta-analysis of prospective cohort studies. J Hum Hypertens. 2016;30(10):573–80.  https://doi.org/10.1038/jhh.2016.44. PubMedCrossRefGoogle Scholar
  100. 100.
    Borgi L, Muraki I, Satija A, et al. Fruit and vegetable consumption and the incidence of hypertension in three prospective cohort studies. Hypertension. 2016;67:288–93.PubMedGoogle Scholar
  101. 101.
    Borgi L, Rimm EB, Willett WC, Forman JP. Potato intake and incidence of hypertension from three prospective US cohort studies. BMJ. 2016;353:i2351.  https://doi.org/10.1136/bmj.i2351.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Appel LJ, Moore TJ, Obarzanek E, et al. A clinical trial of the effects of dietary patterns on blood pressure. N Engl J Med. 1997;336:1117–24.PubMedCrossRefGoogle Scholar
  103. 103.
    Hu D, Huang J, Wang Y, et al. Fruits and vegetables consumption and risk of stroke. A meta-analysis of prospective cohort studies. Stroke. 2014;45:1613–9.PubMedCrossRefGoogle Scholar
  104. 104.
    Cassidy A, Bertoia M, Chiuve S, et al. Habitual intake of anthocyanins and flavanones and risk of cardiovascular disease in men. Am J Clin Nutr. 2016;104:587–94.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Oude Griep LM, Verschuren WMM, Kromhout D, et al. Colors of fruit and vegetables and 10-year incidence of stroke. Stroke. 2011;42:3190–5.PubMedCrossRefGoogle Scholar
  106. 106.
    Joshipura KJ, Ascherio A, Manson JE, et al. Fruit and vegetable intake in relation to risk of ischemic stroke. JAMA. 1999;282:1233–9.PubMedCrossRefGoogle Scholar
  107. 107.
    Wang P-Y, Fang J-C, Gao Z-H, et al. Higher intake of fruits, vegetables or their fiber reduces the risk of type 2 diabetes: a meta-analysis. J Diabetes Investig. 2016;7:56–69.  https://doi.org/10.1111/di.12376. PubMedCrossRefGoogle Scholar
  108. 108.
    Li M, Fan Y, Zhang X, et al. Fruit and vegetable intake and risk of type 2 diabetes mellitus: meta-analysis of prospective cohort studies. BMJ Open. 2014;4(11):e005497.  https://doi.org/10.1136/bmjopen-2014-005497. PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Xi B, Li S, Liu Z, et al. Intake of fruit juice and incidence of type 2 diabetes: a systematic review and meta-analysis. PLoS One. 2014;9(3).  https://doi.org/10.1371/journal.pone.0093471.
  110. 110.
    Mamluk L, O’Doherty MG, Orfanos P, et al. Fruit and vegetable intake and risk of incident of type 2 diabetes: results from the consortium on health and ageing network of cohorts in Europe and the United States (CHANCES). Eur J Clin Nutr. 2016;71:83–91.  https://doi.org/10.1038/ejcn.2016.143. PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Muraki I, Rimm EB, Willett WC, et al. Potato consumption and risk of type 2 diabetes: results from three prospective cohort studies. Diabetes Care. 2016;39:376–84.  https://doi.org/10.2337/dc15-0547. PubMedCrossRefGoogle Scholar
  112. 112.
    Aune D, Lau R, Chan DSM, et al. Nonlinear reduction in risk for colorectal cancer by fruit and vegetable intake based on meta-analysis of prospective studies. Gastroenterology. 2011;141:106–18.PubMedCrossRefGoogle Scholar
  113. 113.
    Kunzmann AT, Coleman HG, Huang W-Y, et al. Fruit and vegetable intakes and risk of colorectal cancer and incident and recurrent adenomas in the PLCO cancer screening trial. Int J Cancer. 2016;138:1851–61.PubMedCrossRefGoogle Scholar
  114. 114.
    Leenders M, Siersema PD, Overvad K, et al. Subtypes of fruit and vegetables, variety in consumption and risk of colon and rectal cancer in the European Prospective Investigation into Cancer and Nutrition. Int J Cancer. 2015;137(11):2705–14.  https://doi.org/10.1002/ijc.29640. PubMedCrossRefGoogle Scholar
  115. 115.
    Hui C, Qi X, Qianyong Z, Xiaoli P, et al. Flavonoids, flavonoid subclasses and breast cancer risk: a meta-analysis of epidemiologic studies. PLoS One. 2013;8(1):e54318.  https://doi.org/10.1371/journal.pone.0054318. PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Aune D, Chan DS, Vieira AR, et al. Fruits, vegetables and breast cancer risk: a systematic review and meta-analysis of prospective studies. Breast Cancer Res Treat. 2012;134(2):479–93.  https://doi.org/10.1007/s10549-012-2118-1. PubMedCrossRefGoogle Scholar
  117. 117.
    Aune D, Chan DS, Vieira AR, et al. Dietary compared with blood concentration of carotenoids and breast cancer risk: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2012;96:356–73.PubMedCrossRefGoogle Scholar
  118. 118.
    Lamport DJ, Saunders C, Butler LT, Spencer JPR. Fruits, vegetables, 100% juices, and cognitive function. Nutr Rev. 2014;2(12):774–89.CrossRefGoogle Scholar
  119. 119.
    Loef M, Walach H. Fruit, vegetable and prevention of cognitive decline or dementia: a systematic review of cohort studies. J Nutr Health Aging. 2012;16(7):625–30.CrossRefGoogle Scholar
  120. 120.
    Neshatdousta S, Saunders C, Castle SM, et al. High-flavonoid intake induces cognitive improvements linked to changes in serum brain-derived neurotrophic factor: two randomised, controlled trials. Nutr Healthy Aging. 2016;4:81–93.  https://doi.org/10.3233/NHA-1615. CrossRefGoogle Scholar
  121. 121.
    Kean RJ, Lamport DJ, Dodd GF, et al. Chronic consumption of flavanone-rich orange juice is associated with cognitive benefits: an 8-wk, randomized, double-blind, placebo-controlled trial in healthy older adults. Am J Clin Nutr. 2015;101:506–14.PubMedCrossRefGoogle Scholar
  122. 122.
    Nooyens ACJ, Bueno-de-Mesquita HB, van Boxtel MPJ. Fruit and vegetable intake and cognitive decline in middle-aged men and women: the Doetinchem Cohort Study. Br J Nutr. 2011;106:752–61.PubMedCrossRefGoogle Scholar
  123. 123.
    Peneau S, Galan P, Jeandel C, et al. Fruit and vegetable intake and cognitive function in the SU.VI.MAX 2 prospective study. Am J Clin Nutr. 2011;94:1295–303.PubMedCrossRefGoogle Scholar
  124. 124.
    Neville CE, Young IS, Gilchrist SECM, et al. Effect of increased fruit and vegetable consumption on physical function and muscle strength in older adults. Age. 2013;35:2409–22.  https://doi.org/10.1007/s11357-013-9530-2.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Gibson A, Edgar JD, Neville CE, et al. Effect of fruit and vegetable consumption on immune function in older people: a randomized controlled trial. Am J Clin Nutr. 2012;96:1429–36.PubMedCrossRefGoogle Scholar
  126. 126.
    Ribeiro SM, Morley JE, Malmstrom TK, Miller DK. Fruit and vegetable intake and physical activity as predictors of disability risk factors in African-American middle-aged individuals. J Nutr Health Aging. 2016;20(9):891–6.  https://doi.org/10.1007/s12603-016-0780-4. PubMedCrossRefGoogle Scholar
  127. 127.
    Lian F, Wang J, Huang X, et al. Effect of vegetable consumption on the association between peripheral leucocyte telomere length and hypertension: a case–control study. BMJ Open. 2015;5:e009305.  https://doi.org/10.1136/bmjopen-2015-009305. PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    McCrory MA, Hamaker BR, Lovejoy JC, Eichelsdoerfer PE. Pulse consumption, satiety, and weight management. Adv Nutr. 2010;1:17–30.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Messina V. Nutritional and health benefits of dried beans. Am J Clin Nutr. 2014;100(suppl):437S–42S.PubMedCrossRefGoogle Scholar
  130. 130.
    Farvid MS, Malekshah AF, Pourshams A, et al. Dietary protein sources and all-cause and cause-specific mortality: The Golestan Cohort Study in Iran. Am J Prev Med. 2017;52(2):237–48.  https://doi.org/10.1016/j.amepre.2016.10.041. PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Chang W-C, Wahlqvist ML, Chang H-Y, et al. A bean-free diet increases the risk of all-cause mortality among Taiwanese women: the role of the metabolic syndrome. Public Health Nutr. 2011;15(4):663–72.  https://doi.org/10.1017/S1366890011002151. PubMedCrossRefGoogle Scholar
  132. 132.
    Darmadi-Blackberry I, Wahlqvist ML, Kouris-Blazos A, et al. Legumes: the most important dietary predictor of survival in older people of different ethnicities. Asia Pac J Clin Nutr. 2004;13:217–20.PubMedGoogle Scholar
  133. 133.
    Marventano S, Pulido MI, Sánchez-González C, et al. Legume consumption and CVD risk: a systematic review and meta-analysis. Public Health Nutr. 2017;20(2):245–54.PubMedCrossRefGoogle Scholar
  134. 134.
    Tokede OA, Onabanjo TA, Yansane A, et al. Soya products and serum lipids: a meta-analysis of randomised controlled trials. Br J Nutr. 2015;114:831–43.PubMedCrossRefGoogle Scholar
  135. 135.
    Ha V, John L, Sievenpiper JL, et al. Effect of dietary pulse intake on established therapeutic lipid targets for cardiovascular risk reduction: a systematic review and meta-analysis of randomized controlled trials. CMAJ. 2014;186(8):252–62.CrossRefGoogle Scholar
  136. 136.
    Afshin A, Micha R, Khatibzadeh S, Mozaffarian D. Consumption of nuts and legumes and risk of incident ischemic heart disease, stroke, and diabetes: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:278–88.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Bazzano LA, Thompson AM, Tees MT, et al. Non-soy legume consumption lowers cholesterol levels: a meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2011;21(2):94–103.PubMedCrossRefGoogle Scholar
  138. 138.
    Anderson JW, Bush HM. Soy protein effects on serum lipoproteins: a quality assessment and meta-analysis of randomized, controlled studies. J Am Coll Nutr. 2011;30(2):79–91.PubMedCrossRefGoogle Scholar
  139. 139.
    Liua Z-M, Hob SC, Chen Y-M, Woo J. Effect of soy protein and isoflavones on blood pressure and endothelial cytokines: a 6-month randomized controlled trial among postmenopausal women. J Hypertens. 2013;31(2):384–92.  https://doi.org/10.1097/HJH.0b013e32835c0905. CrossRefGoogle Scholar
  140. 140.
    Pittaway JK, Robertson IK, Ball MJ. Chickpeas may influence fatty acid and fiber intake in an ad libitum diet, leading to small improvements in serum lipid profile and glycemic control. J Am Diet Assoc. 2008;108:1009–13.PubMedCrossRefGoogle Scholar
  141. 141.
    He J, Gu D, Wu X, et al. Effect of soybean protein on blood pressure. A randomized, controlled trial. Ann Intern Med. 2005;143(1):1–9.PubMedCrossRefGoogle Scholar
  142. 142.
    Liu ZM, Chen YM, Ho SC. Effects of soy intake on glycemic control: a meta-analysis of randomized controlled trials. Am J Clin Nutr. 2011;93:1092–101.PubMedCrossRefGoogle Scholar
  143. 143.
    Sievenpiper JL, Kendall CW, Esfahani A, et al. Effect of non-oil-seed pulses on glycaemic control: a systematic review and meta-analysis of randomised controlled experimental trials in people with and without diabetes. Diabetologia. 2009;52:1479–95.PubMedCrossRefGoogle Scholar
  144. 144.
    Ding M, Pan A, Manson JE, et al. Consumption of soy foods and isoflavones and risk of type 2 diabetes: a pooled analysis of three US cohorts. Eur J Clin Nutr. 2016;70(12):1381–7.  https://doi.org/10.1038/ejcn.2016.117. PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Villegas R, Gao YT, Yang G, et al. Legume and soy food intake and the incidence of type 2 diabetes in the Shanghai Women’s Health Study. Am J Clin Nutr. 2008;87:162–7.PubMedPubMedCentralGoogle Scholar
  146. 146.
    Jenkins DJA, Kendall WC, Augustin LSA, et al. Effect of legumes as part of a low glycemic index diet on glycemic control and cardiovascular risk factors in type 2 diabetes mellitus. A randomized controlled trial. Arch Intern Med. 2012;172(21):1653–60.PubMedCrossRefGoogle Scholar
  147. 147.
    Yu Y, Jing X, Li H, et al. Soy isoflavone consumption and colorectal cancer risk: a systematic review and meta-analysis. Sci Rep. 2016;6:25939.  https://doi.org/10.1038/srep25939. PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Zhu B, Sun Y, Qi L, et al. Dietary legume consumption reduces risk of colorectal cancer: evidence from a meta-analysis of cohort studies. Sci Rep. 2015;5:8797.  https://doi.org/10.1038/srep08797. PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Yang G, Shu X-O, Li H, et al. Prospective cohort study of soy food intake and colorectal cancer risk in women. Am J Clin Nutr. 2009;89:577–83.PubMedCrossRefGoogle Scholar
  150. 150.
    Chen M, Rao Y, Zheng Y, et al. Association between soy isoflavone intake and breast cancer risk for pre- and postmenopausal women: a meta-analysis of epidemiological studies. PLoS One. 2014;9(2):e89288.  https://doi.org/10.1371/journal.pone.0089288. PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Xie Q, Chen M-L, Qin Y, et al. Isoflavone consumption and risk of breast cancer: a dose-response meta-analysis of observational studies. Asia Pac J Clin Nutr. 2013;22(1):118–27.  https://doi.org/10.6133/apjcn.2013.22.1.16. PubMedGoogle Scholar
  152. 152.
    Chen X, Huang Y, Cheng HG. Lower intake of vegetables and legumes associated with cognitive decline among illiterate elderly Chinese: a 3-year cohort study. J Nutr Health Aging. 2012;16(6):548–52.CrossRefGoogle Scholar
  153. 153.
    St. John JA, Henderson VW, Hodis HN, et al. Associations of urine excretion of isoflavonoids with cognition in postmenopausal women in the Women’s Isoflavone Soy Health Clinical Trial. J Am Geriatr Soc. 2014;62(4):629–35.  https://doi.org/10.1111/jgs.12752.PubMedCrossRefGoogle Scholar
  154. 154.
    Kreijkamp-Kaspers S, Kok L, Gobbee DE, et al. Effect of soy protein containing isoflavones on cognitive function, bone mineral density, and plasma lipids in postmenopausal women a randomized controlled trial. JAMA. 2004;292:65–74.PubMedCrossRefGoogle Scholar
  155. 155.
    Jackson CL, Hu FB. Long-term associations of nut consumption with body weight and obesity. Am J Clin Nutr. 2014;100(suppl):408S–11S.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Kris-Etherton PM, Hu FB, Ros E, Sabaté J. The role of tree nuts and peanuts in the prevention of coronary heart disease: multiple potential mechanisms. J Nutr. 2008;138(9):1746S–51S.PubMedCrossRefGoogle Scholar
  157. 157.
    Brown RC, Tey SL, Gray AR, et al. Nut consumption is associated with better nutrient intakes: results from the 2008/09 New Zealand Adult Nutrition Survey. Br J Nutr. 2016;115:105–12.PubMedCrossRefGoogle Scholar
  158. 158.
    Novotny JA, Gebauer SK, Baer DJ. Discrepancy between the Atwater factor predicted and empirically measured energy values of almonds in human diets. Am J Clin Nutr. 2012;96:296–301.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Nielsen SJ, Kit BK, Ogden CL. Nut consumption among U.S. adults, 2009-2010. NCHS data brief, no 176. Hyattsville, MD: National Center for Health Statistics 2014.Google Scholar
  160. 160.
    Grosso G, Estruch R. Nut consumption and age-related disease. Maturitas. 2015;84:11–6.PubMedCrossRefGoogle Scholar
  161. 161.
    Aune D, Keum NN, Giovannucci E, et al. Nut consumption and risk of cardiovascular disease, total cancer, all-cause and cause specific mortality: a systematic review and dose-response meta-analysis of prospective studies. BMC Med. 2016;14:207.  https://doi.org/10.1186/s12916-016-0730-3. PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Mayhew AJ, de Souza RJ, Meyre D, et al. A systematic review and meta-analysis of nut consumption and incident risk of CVD and all-cause mortality. Br J Nutr. 2016;115:212–25.PubMedCrossRefGoogle Scholar
  163. 163.
    Wu L, Wang Z, Zhu J, et al. Nut consumption and risk of cancer and type 2 diabetes: a systematic review and meta-analysis. Nutr Rev. 2015;73(7):409–25.PubMedPubMedCentralCrossRefGoogle Scholar
  164. 164.
    Guo K, Zhou Z, Jiang Y, et al. Meta-analysis of prospective studies on the effects of nut consumption on hypertension and type 2 diabetes mellitus. J Diabetes. 2015;7(2):202–12; doi: 1111/1753-0407.12173.Google Scholar
  165. 165.
    Zhang Z, Xu G, Wei Y, et al. Nut consumption and risk of stroke. Eur J Epidemiol. 2015;30(3):189–96.  https://doi.org/10.1007/s10654-015-9999-3. PubMedCrossRefGoogle Scholar
  166. 166.
    Luo C, Zhang Y, Ding Y, et al. Nut consumption and risk of type 2 diabetes, cardiovascular disease, and all-cause mortality: a systematic review and meta-analysis. Am J Clin Nutr. 2014;100:256–69.PubMedCrossRefGoogle Scholar
  167. 167.
    Zhou D, Yu H, He F, et al. Nut consumption in relation to cardiovascular disease risk and type 2 diabetes: a systematic review and meta-analysis of prospective studies. Am J Clin Nutr. 2014;100:270–7.PubMedCrossRefGoogle Scholar
  168. 168.
    Wang W, Yang M, Kenfield SA, et al. Nut consumption and prostate cancer risk and mortality. Br J Cancer. 2016;115(3):371–4.  https://doi.org/10.1038/bjc.2016.181. PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Yang M, FB H, Giovannucci E, et al. nut consumption and risk of colorectal cancer in women. Eur J Clin Nutr. 2016;70(3):333–7.  https://doi.org/10.1038/ejcn.2015.66. PubMedCrossRefGoogle Scholar
  170. 170.
    Luu HN, Blot WJ, Xiang Y-B, et al. Prospective evaluation of the association of nut/peanut consumption with total and cause-specific mortality. JAMA Intern Med. 2015;175(5):755–66.PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Gopinath B, Flood VM, Burlutksy G, Mitchell P. Consumption of nuts and risk of total and cause-specific mortality over 15 years. Nutr Metab Cardiovasc Dis. 2015;25(12):1125–31.PubMedCrossRefGoogle Scholar
  172. 172.
    Hshieh TT, Petrone AB, Gaziano JM, Djousse L. Nut consumption and risk of mortality in the Physicians’ Health Study. Am J Clin Nutr. 2015;101(2):407–12.PubMedCrossRefGoogle Scholar
  173. 173.
    Bao Y, Han J, FB H, et al. Association of nut consumption with total and cause-specific mortality. N Engl J Med. 2013;369(21):2001–11.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Bao Y, FB H, Giovannucci EL, et al. Nut consumption and risk of pancreatic cancer in women. Br J Cancer. 2013;109:2911–6.PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Jenab M, Ferrari P, Slimani N, et al. Association of nut and seed intake with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition. Cancer Epidemiol Biomarkers Prev. 2004;13:1595–603.PubMedGoogle Scholar
  176. 176.
    Guasch-Ferré M, Bulló M, Martínez-González MA, et al. Frequency of nut consumption and mortality risk in the PREDIMED nutrition intervention trial. BMC Med. 2013;11:164.  https://doi.org/10.1186/1741-7015-11-164. PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Toledo E, Salas-Salvado J, Donat-Vargas D, et al. Mediterranean diet and invasive breast cancer risk among women at high cardiovascular risk in the PREDIMED trial. A randomized clinical trial. JAMA Intern Med. 2015;175(11):1752–60.  https://doi.org/10.1001/jamainternalmed2015.48.38.PubMedCrossRefGoogle Scholar
  178. 178.
    Salas-Salvado J, Bullo M, Estruch R, et al. Prevention of diabetes with Mediterranean diets. Ann Intern Ned. 2014;160:1–10.CrossRefGoogle Scholar
  179. 179.
    Estruch R, Ros E, Salas-Salvadó J, et al. Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med. 2013;368(14):1279–90.PubMedCrossRefGoogle Scholar
  180. 180.
    Musa-Veloso K, Paulionis L, Poon T, Lee HY. The effects of almond consumption on fasting blood lipid levels: a systematic review and meta-analysis of randomised controlled trials. J Nutr Sci. 2016;5:e34.  https://doi.org/10.1017/jns.2016.19.PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Del Gobbo LC, Falk MC, Feldman R, et al. Effects of tree nuts on blood lipids, apolipoproteins, and blood pressure: systematic review, meta-analysis, and dose-response of 61 controlled intervention trials. Am J Clin Nutr. 2015;102:1347–56.PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Mohammadifard N, Salehi-Abargouei A, Salas-Salvadó J, et al. The effect of tree nut, peanut, and soy nut consumption on blood pressure: a systematic review and meta-analysis of randomized controlled clinical trials. Am J Clin Nutr. 2015;101:966–82.PubMedCrossRefGoogle Scholar
  183. 183.
    Viguiliouk E, Kendall CWC, Mejia SB, et al. Effect of tree nuts on glycemic control in diabetes: a systematic review and meta-analysis of randomized controlled dietary trials. PLoS One. 2014;9(7).  https://doi.org/10.1371/journal.pone.0103376.
  184. 184.
    Banel DK, Hu FB. Effects of walnut consumption on blood lipids and other cardiovascular risk factors: a meta-analysis and systematic review. Am J Clin Nutr. 2009;90:56–63.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Blanco Mejia S, Kendall CWC, Viguiliouk E, et al. Effect of tree nuts on metabolic syndrome criteria: a systematic review and meta-analysis of randomised controlled trials. BMJ Open. 2014;4(7):e004660.  https://doi.org/10.1136/bmjopen-2013-004660. PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Flores-Mateo G, Rojas-Rueda D, Basora J, et al. Nut intake and adiposity: meta-analysis of clinical trials. Am J Clin Nutr. 2013;97:1346–55.PubMedCrossRefGoogle Scholar
  187. 187.
    Xiao Y, Huang W, Peng C, et al. Effect of nut consumption on vascular endothelial function: A systematic review and meta-analysis of randomized controlled trials. Clin Nutr. 2017.  https://doi.org/10.1016/j.clnu.2017.04.011.
  188. 188.
    Gulati S, Misra A, Pandey RM. Effect of almond supplementation on glycemia and cardiovascular risk factors in Asian Indians in North India with type 2 diabetes mellitus: a 24-week study. Metab Syndr Relat Disord. 2017;15(2):98–105.  https://doi.org/10.1089/met.2016.0066. PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Njike VY, Ayettey R, Petraro P, et al. Walnut ingestion in adults at risk for diabetes: effects on body composition, diet quality, and cardiac risk measures. BMJ Open Diabetes Res Care. 2015;3:e000115.  https://doi.org/10.1136/bmjdrc-2015-000115.PubMedPubMedCentralCrossRefGoogle Scholar
  190. 190.
    Sauder KA, McCrea CE, Ulbrecht JS, et al. Effects of pistachios on the lipid/lipoprotein profile, glycemic control, inflammation, and endothelial function in type 2 diabetes: a randomized trial. Metabolism. 2015;64(11):1521–9.  https://doi.org/10.1016/j.metabol.2015.07.021. PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline a randomized clinical trial. JAMA Intern Med. 2015;175(7):1094–103.  https://doi.org/10.1001/jamaiternmed.2015.1668. PubMedCrossRefGoogle Scholar
  192. 192.
    O’Brien J, Okereke O, Devore E, et al. Long-term intake of nuts in relation to cognitive function in older women. J Nutr Health Aging. 2014;18(5):496–502.PubMedPubMedCentralCrossRefGoogle Scholar
  193. 193.
    Sánchez-Villegas A, Galbete C, Martinez-González MA. The effect of the Mediterranean diet on plasma brain-derived neurotrophic factor (BDNF) levels: The PREDIMED-NAVARRA Randomized Trial. Nutr Neurosci. 2011;14(5):195–201.PubMedCrossRefGoogle Scholar
  194. 194.
    Lee J-Y, Jun N-R, Yoon D, et al. Association between dietary patterns in the remote past and telomere length. Eur J Clin Nutr. 2015;69(9):1048–52.  https://doi.org/10.1038/ejcn.2015.58. PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2018

Authors and Affiliations

  • Mark L. Dreher
    • 1
  1. 1.Nutrition Science Solutions LLCWimberleyUSA

Personalised recommendations