Skip to main content

Recent Advances in the Active Biomolecules Involved in Rhizobia-Legume Symbiosis

  • Chapter
  • First Online:

Abstract

The mutualistic interactions between nodule-forming rhizobia and specific legume host plants involve a series of signalling molecules leading to the establishment of a strong and functional symbiosis between the two partners. The competitive ability and legume host specificity of rhizobia together with the ability of both rhizobia and legumes to release functionally divergent active molecules determines the success of symbiotic relationships. Here, recent developments in the key active biomolecules affecting legume-rhizobia symbiosis are surveyed and discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abd-Alla MH, El-enany AWE, Bagy MK, Bashandy SR (2014) Alleviating the inhibitory effect of salinity stress on nod gene expression in Rhizobium tibeticum–fenugreek (Trigonella foenum graecum) symbiosis by isoflavonoids treatment. J Plant Interact 9:275–284

    Article  CAS  Google Scholar 

  • Al-Babili S, Bouwmeester HJ (2015) Strigolactones, a novel carotenoid-derived plant hormone. Annu Rev Plant Biol 66:161–186

    Article  CAS  PubMed  Google Scholar 

  • Albareda M, Manyani H, Imperial J, Brito B, Ruiz-Argüeso T, Böck A, Palacios JM (2012) Dual role of HupF in the biosynthesis of [NiFe] hydrogenase in Rhizobium leguminosarum. BMC Microbiol 12:256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amor BB, Shaw SL, Oldroyd GED, Maillet F, Penmetsa RV, Cook D, Long SR, Dénarié J, Gough C (2003) The NFP locus of Medicago truncatula controls an early step of Nod factor signal transduction upstream of a rapid calcium flux and root hair deformation. Plant J 34:495–506

    Article  PubMed  Google Scholar 

  • Andersen OM, Markham KR (2006) Flavonoids: chemistry, biochemistry and applications. CRC Press, Boca Raton

    Google Scholar 

  • Andersson CR, Jensen EO, Llewellyn DJ, Dennis ES, Peacock WJ (1996) A new hemoglobin gene from soybean: a role for hemoglobin in all plants. Proc Natl Acad Sci U S A 93:5682–5687

    Article  CAS  Google Scholar 

  • Ané JM, Kiss GB, Riely BK, Penmetsa RV, Oldroyd GED, Ayax C, Lévy J, Debellé F, Baek JM, Kalo P, Rosenberg C, Roe BA, Long SR, Dénarié J, Cook DR (2004) Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303:1364–1367

    Article  PubMed  CAS  Google Scholar 

  • Appleby CA (1992) The origin and functions of haemoglobin in plants. Sci Prog 76:365–398

    CAS  Google Scholar 

  • Appleby CA, Bogusz D, Dennis ES, Peacock WJ (1998) A role for haemoglobin in all plant roots? Plant Cell Environ 11:359–367

    Article  Google Scholar 

  • Arredondo-Peter R, Hargrove MS, Sarath G, Moran JF, Lohrman J, Olson JS, Klucas RV (1997) Rice hemoglobins. Gene cloning, analysis, and O2-binding kinetics of a recombinant protein synthesized in Escherichia coli. Plant Physiol 115:1259–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arrighi JF, Cartieaux F, Brown SC, Rodier-Goud M, Boursot M, Fardoux J, Patrel D, Gully D, Fabre S, Chaintreuil C, Giraud E (2012) Aeschynomene evenia, a model plant for studying the molecular genetics of the Nod-independent rhizobium-legume symbiosis. Mol Plant Microbe Interact 25:851–861

    Article  CAS  PubMed  Google Scholar 

  • Awad AA, Sato D, Kusumoto D, Kamioka H, Takeuchi Y, Yoneyama K (2006) Characterization of strigolactones, germination stimulants for the root parasitic plants Striga and Orobanche, produced by maize, millet and sorghum. Plant Growth Regul 48:221–227

    CAS  Google Scholar 

  • Baginsky C, Brito B, Imperial J, Palacios JM, Ruiz-Argüeso T (2002) Diversity and evolution of hydrogenase systems in rhizobia. Appl Environ Microbiol 68:4915–4924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baginsky C, Brito B, Imperial J, Ruiz-Argüeso T, Palacios JM (2005) Symbiotic hydrogenase activity in Bradyrhizobium sp. (vigna) increases nitrogen content in Vigna unguiculata plants. Appl Environ Microbiol 71:7536–7538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baginsky C, Palacios JM, Imperial J, Ruiz-Argüeso T, Brito B (2004) Molecular and functional characterization of the Azorhizobium caulinodans ORS571 hydrogenase gene cluster. FEMS Microbiol Lett 237:399–405

    CAS  PubMed  Google Scholar 

  • Bahyrycz A, Konopinska D (2007) Plant signalling peptides: some recent developments. J Pept Sci 13:787–797

    Article  CAS  PubMed  Google Scholar 

  • Barnett MJ, Fisher RF (2006) Global gene expression in the rhizobial–legume symbiosis. Symbiosis 42:1–24

    CAS  Google Scholar 

  • Becana M, Navascués J, Pérez-Rontomé C, Walker A, Desbois A, Abian J (2015) Leghemoglobins with nitrated hemes in legume root nodules. In: de Bruijn F (ed) Biological nitrogen fixation, vol 2. John Wiley & Sons, New York, pp 705–713

    Chapter  Google Scholar 

  • Becker A, Pühler A (1998) Production of exopolysaccharides. In: Spaink HP, Kondorosi A, Hooykaas JJ (eds) The rhizobiaceae. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 97–118

    Chapter  Google Scholar 

  • Becker A, Fraysse N, Sharypova L (2005) Recent advances in studies on structure and symbiosis-related function of rhizobial K-antigens and lipopolysaccharides. Mol Plant Microbe Interact 18:899–905

    Article  CAS  PubMed  Google Scholar 

  • Begum AA, Leibovitch S, Migner P, Zhang F (2001) Specific flavonoids induced nod gene expression and pre-activated nod genes of Rhizobium leguminosarum increased pea (Pisum sativum L.) and lentil (Lens culinaris L.) nodulation in controlled growth chamber environments. J Exp Bot 52:1537–1543

    Article  CAS  PubMed  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4(7):e226

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bogino PC, Nievas FL, Giordano W (2015) A review: Quorum sensing in Bradyrhizobium. Appl Soil Ecol 94:49–58

    Article  Google Scholar 

  • Braeken K, Daniels R, Vos K, Fauvart M, Bachaspatimayum D, Vanderleyden J, Michiels J (2008) Genetic determinants of swarming in Rhizobium etli. Microb Ecol 55:54–64

    Article  PubMed  Google Scholar 

  • Breakspear A, Liu C, Roy S, Stacey N, Rogers C, Trick M, Morieri G, Mysore KS, Wen J, Oldroyd GED, Downie JA, Murray JD (2014) The root hair “infectome” of Medicago truncatula uncovers changes in cell cycle genes and reveals a requirement for auxin signaling in rhizobial infection. Plant Cell 26:4680–4701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breakspear A, Liu C, Cousins DR, Roy S, Guan D, Murray JD (2015) The role of hormones in rhizobial infection. In: de Bruijn F (ed) Biological nitrogen fixation, vol 2. John Wiley & Sons, New York, pp 555–566

    Chapter  Google Scholar 

  • Breedveld MW, Miller KJ (1994) Cyclic b-glucans of members of the family Rhizobiaceae. Microbiol Rev 58:145–161

    CAS  PubMed  PubMed Central  Google Scholar 

  • Breedveld MW, Miller KJ (1998) Cell surface b-glucans. In: Spaink HP, Kondorosi A, Hooykaas JJ (eds.) The Rhizobiaceae Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 81-96

    Google Scholar 

  • Brito B, Palacios JM, Hidalgo E, Imperial J, Ruiz-Argüeso T (1994) Nickel availability to pea (Pisum sativum L.) plants limit hydrogenase activity of Rhizobium leguminosarum bv. viciae bacteroids by affecting the processing of the hydrogenase structural subunits. J Bacteriol 176:5297–5303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Broghammer A, Krusell L, Blaise M, Sauer J, Sullivan JT, Maolanon N, Vinther M, Lorentzen A, Madsen EB, Jensen KJ, Roepstorff P, Thirup S, Ronson CW, Thygesen MB, Stougaard J (2012) Legume receptors perceive the rhizobial lipochitin oligosaccharide signal molecules by direct binding. Proc Natl Acad Sci U S A 109:13859–13864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buer CS, Imin N, Djordjevic MA (2010) Flavonoids: new roles for old molecules. J Integr Plant Biol 52:98–111

    Article  CAS  PubMed  Google Scholar 

  • Campalans A, Kondorosi A, Crespi M (2004) Enod40, a short open reading frame-containing mRNA, induces cytoplasmic localization of a nuclear RNA binding protein in Medicago truncatula. Plant Cell 16:1047–1059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantero L, Palacios JM, Ruiz-Argüeso T, Imperial J (2006) Proteomic analysis of quorum sensing in Rhizobium leguminosarum bv. viciae UPM791. Proteomics 6:S97–106

    Article  PubMed  Google Scholar 

  • Cao H, Yang M, Zheng H, Zhang J, Zhong Z, Zhu J (2009) Complex quorum-sensing regulatory systems regulate bacterial growth and symbiotic nodulation in Mesorhizobium tianshanense. Arch Microbiol 191:283–289

    Article  CAS  PubMed  Google Scholar 

  • Charon C, Johansson C, Kondorosi E, Kondorosi A, Crespi M (1997) enod40 induces dedifferentiation and division of root cortical cells in legumes. Proc Natl Acad Sci U S A 94:8901–8906

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Charpentier M, Sun J, Martins TV, Radhakrishnan GV, Findlay K, Soumpourou E, Thouin J, Véry AA, Sanders D, Morris RJ, Oldroyd GED (2016) Nuclear-localized cyclic nucleotide-gated channels mediate symbiotic calcium oscillations. Science 352(6289):1102–1105

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Batley M, Redmond J, Rolfe BG (1985) Alteration of effective nodulation properties of a fast-growing broad host range Rhizobium due to changes in exopolysaccharide synthesis. J Plant Physiol 120:331–349

    Article  CAS  Google Scholar 

  • Cheng Q (2008) Perspectives in biological nitrogen fixation research. J Integr Plant Biol 50:786–798

    Article  CAS  PubMed  Google Scholar 

  • Cheon CI, Hong Z, Verma DP (1994) Nodulin-24 follows a novel pathway for integration into the peribacteroid membrane in soybean root nodules. J Biol Chem 269:6598–6602

    CAS  PubMed  Google Scholar 

  • Cheynier V, Comte G, Davies KM, Lattanzio V, Martens S (2013) Plant phenolics: recent advances on their biosynthesis, genetics, and ecophysiology. Plant Physiol Biochem 72:1–20

    Article  CAS  PubMed  Google Scholar 

  • Corich V, Goormachtig S, Lievens S, Van Montagu M, Holsters M (1998) Patterns of ENOD40 gene expression in stem-borne nodules of Sesbania rostrata. Plant Mol Biol 37:67–76

    Article  CAS  PubMed  Google Scholar 

  • Crespi MD, Jurkevitch E, Poiret M, d'Aubenton-Carafa Y, Petrovics G, Kondorosi E, Kondorosi A (1994) enod40, a gene expressed during nodule organogenesis, codes for a non-translatable RNA involved in plant growth. EMBO J 13:5099–5112

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cullimore JV, Ranjeva R, Bono JJ (2001) Perception of lipo-chitooligosaccharidic Nod factors in legumes. Trends Plant Sci 6:24–30

    Article  CAS  PubMed  Google Scholar 

  • Cubo MT, Economou A, Murphy G, Johnston AW, Downie JA (1992) Molecular characterization and regulation of the rhizosphere-expressed genes rhiABCR that can influence nodulation by Rhizobium leguminosarum biovar viciae. J Bacteriol 174:4026–4035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Damiani I, Pauly N, Puppo A, Brouquisse R, Boscari A (2016) Reactive oxygen species and nitric oxide control early steps of the legume–Rhizobium symbiotic interaction. Front Plant Sci 7:454

    Google Scholar 

  • Daniels R, Reynaert S, Hoekstra H, Verreth C, Janssens J, Braeken K, Fauvart M, Beullens S, Heusdens C, Lambrichts I, De Vos DE, Vanderleyden J, Vermant J, Michiels J (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci U S A 103:14965–14970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das TK, Lee HC, Duff SM, Hill RD, Peisach J, Rousseau DL, Wittenberg BA, Wittenberg JB (1999) The heme environment in barley hemoglobin. J Biol Chem 274:4207–4212

    Article  CAS  PubMed  Google Scholar 

  • Dazzo F, Truchet G, Sherwood J, Hrabak E, Abe M, Pankratz HS (1984) Specific phases of root hair attachment in the Rhizobium trifolii-clover symbiosis. Appl Environ Microbiol 48:1140–1150

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dazzo FB, Truchet GL, Hollingsworth RI, Hrabak EM, Pankratz HS, Philip-Hollingsworth S, Salzwedel JL, Chapman K, Appenzeller L, Squartini A, Gerhold D, Orgambide G (1991) Rhizobium LPS modulates infection thread development in white clover root hairs. J Bacteriol 173:5371–5384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Cerro P, Rolla-Santos AA, Valderrama-Fernández R, Gil-Serrano A, Bellogín RA, Gomes DF, Pérez-Montaño F, Megías M, Hungría M, Ollero FJ (2016) NrcR, a new transcriptional regulator of Rhizobium tropici CIAT 899 involved in the legume root-nodule symbiosis. PLoS One 11(4):e0154029

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Hoff D, Brill LM, Hirsch AM (2009) Plant lectins: the ties that bind in root symbiosis and plant defense. Mol Genet 282:1–15

    Google Scholar 

  • de Oliveira Cunha C, Goda Zuleta LF, Paula de Almeida LG, Prioli Ciapina L, Lustrino Borges W, Pitard RM, Ivo Baldani J, Straliotto R, Miana de Faria S, Hungria M, Sousa Cavadae B, Martins Mercante F, Ribeiro de Vasconcelos AT (2012) Complete genome sequence of Burkholderia phenoliruptrix BR3459a (CLA1), a heat-tolerant, nitrogen-fixing symbiont of Mimosa flocculosa. J Bacteriol 194:6675–6676

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Saint-Germain A, Bonhomme S, Boyer FD, Rameau C (2013) Novel insights into strigolactone distribution and signalling. Curr Opin Plant Biol 16:583–589

    Article  PubMed  CAS  Google Scholar 

  • de Vasconcelos M, Oliveira Cunha C, Sousa Arruda FV, Alves Carneiro V, Mesquita Bastos R, Martins Mercante F, Santiago do Nascimento K, Sousa Cavada B, Pires dos Santos R, Holanda Teixeira E (2013) Effect of leguminous lectins on the growth of Rhizobium tropici CIAT899. Molecules 18:5792–5803

    Article  PubMed  Google Scholar 

  • Diebold R, Noel KD (1989) Rhizobium leguminosarum exopolysaccharide mutants: biochemical and genetic analyses and symbiotic behaviour on three hosts. J Bacteriol 171:4821–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Djordjevic SP, Chen H, Batley M, Redmond JW, Rolfe BG (1987a) Nitrogen fixation ability of exopolysaccharide synthesis mutants of Rhizobium sp. strain NGR234 and Rhizobium trifolii is restored by the addition of homologous exopolysaccharides. J Bacteriol 169:53–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dos Santos PC, Dean DR, Hu Y, Ribbe MW (2004) Formation and insertion of the nitrogenase iron-molybdenum cofactor. Chem Rev 104:1159–1173

    Article  CAS  PubMed  Google Scholar 

  • Downie JA (2010) The roles of extracellular proteins, polysaccharides and signals in the interactions of rhizobia with legume roots. FEMS Microbiol Rev 34:150–170

    Article  CAS  PubMed  Google Scholar 

  • Dun EA, Brewer PB, Beveridge CA (2009) Strigolactones: discovery of the elusive shoot branching hormone. Trends Plant Sci 14:364–372

    Article  CAS  PubMed  Google Scholar 

  • Edwards A, Frederix M, Wisniewski-Dyé F, Jones J, Zorreguieta A, Downie JA (2009) The cin and rai quorum-sensing regulatory systems in Rhizobium leguminosarum are coordinated by ExpR and CinS, a small regulatory protein coexpressed with CinI. J Bacteriol 191:3059–3067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • el Zahar Haichar F, Santaella C, Heulin T, Achouak W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  • Evans HJ, Harker AR, Papen H, Russell SA, Hanus FJ, Zuber M (1987) Physiology, biochemistry and genetics of the uptake hydrogenase in Rhizobium. Annu Rev Microbiol 41:335–361

    Article  CAS  PubMed  Google Scholar 

  • Fabre S, Gully D, Poitout A, Patrel D, Arrighi JF, Giraud E, Czernic P, Cartieaux F (2015) Nod factor-independent nodulation in Aeschynomene evenia required the common plant-microbe symbiotic toolkit. Plant Physiol 169:2654–2664

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin MH, Lin YH, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  CAS  PubMed  Google Scholar 

  • Fernández D, Toffanin A, Palacios JM, Ruiz-Argüeso T, Imperial J (2005) Hydrogenase genes are uncommon and highly conserved in Rhizobium leguminosarum bv. viciae. FEMS Microbiol Lett 253:83–88

    Article  PubMed  CAS  Google Scholar 

  • Fliegmann J, Jauneau A, Pichereaux C, Rosenberg C, Gasciolli V, Timmers ACJ, Burlet-Schiltz O, Cullimore J, Bono JJ (2016) LYR3, a high-affinity LCO-binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor. FEBS Lett 590:1477–1487

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Forsberg LS, Reuhs B (1997) Structural characterization of the K antigens from Rhizobium fredii USDA257: evidence for a common structural motif, with strain-specific variation, in the capsular polysaccharides of Rhizobium spp. J Bacteriol 179:5366–5371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg LS, Carlson RW (1998) The structures of the lipopolysaccharides from Rhizobium etli strains CE358 and CE359 – the complete structure of the core region of R. etli lipopolysaccharides. J Biol Chem 273:2747–2757

    Article  CAS  PubMed  Google Scholar 

  • Fraysse N, Couderc F, Poinsot V (2003) Surface polysaccharide involvement in establishing the Rhizobium-legume symbiosis. Eur J Biochem 270:1365–1380

    Article  CAS  PubMed  Google Scholar 

  • Fukuhara H, Minakawa Y, Akao S, Minamisawa K (1994) The involvement of indole-3-acetic acid produced by Bradyrhizobium elkanii in nodule formation. Plant Cell Physiol 35:1261–1265

    Article  CAS  Google Scholar 

  • Gage DJ (2002) Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J Bacteriol 184:7042–7046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrocho-Villegas V, Gopalasubramaniam SK, Arredondo-Peter R (2007) Plant hemoglobins: what we know six decades after their discovery. Gene 398:78–85

    Article  CAS  PubMed  Google Scholar 

  • Gibson KE, Kobayashi H, Walker GC (2008) Molecular determinants of a symbiotic chronic infection. Annu Rev Genet 42:413–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giordano W (2015) Rhizobial extracellular signaling molecules and their functions in symbiotic interactions with legumes. In: Quorum sensing vs quorum quenching: a battle with no end in sight. Springer, India, pp 123–132

    Google Scholar 

  • Girard G, Roussis A, Gultyaev AP, Pleij CW, Spaink HP (2003) Structural motifs in the RNA encoded by the early nodulation gene enod40 of soybean. Nucleic Acids Res 31:5003–5015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giraud E, Moulin L, Vallenet D, Barbe V, Cytryn E, Avarre JC, Jaubert M, Simon D, Cartieaux F, Prin Y, Bena G, Hannibal L, Fardoux J, Kojadinovic M, Vuillet L, Lajus A, Cruveiller S, Rouy Z, Mangenot S, Segurens B, Dossat C, Franck WL, Chang WS, Saunders E, Bruce D, Richardson P, Normand P, Dreyfus B, Pignol D, Stacey G, Emerich D, Verméglio A, Médigue C, Sadowsky M (2007) Legumes symbioses: absence of Nod genes in photosynthetic bradyrhizobia. Science 316:1307–1312

    Article  PubMed  Google Scholar 

  • González JE, Marketon MM (2003) Quorum sensing in nitrogen-fixing rhizobia. Microbiol Mol Biol Rev 67:574–592

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gough C, Jacquet C (2013) Nod factor perception protein carries weight in biotic interactions. Trends Plant Sci 18(10):566–574

    Article  CAS  PubMed  Google Scholar 

  • Gray XJ, Zhan H, Levery SB, Battisti L, Rolfe BG, Leigh JA (1991) Heterologous exopolysaccharide production in Rhizobium sp. strain NGR234 and consequences for nodule development. J Bacteriol 173:3066–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gronlund M, Roussis A, Flemetakis E, Quaedvlieg NE, Schlaman HR, Umehara Y, Katinakis P, Stougaard J, Spaink HP (2005) Analysis of promoter activity of the early nodulin Enod40 in Lotus japonicus. Mol Plant Microbe Interact 18:414–427

    Article  CAS  PubMed  Google Scholar 

  • Guenther JF, Chanmanivone N, Galetovic MP, Wallace IS, Cobb JA, Roberts DM (2003) Phosphorylation of soybean nodulin 26 on serine 262 enhances water permeability and is regulated developmentally and by osmotic signals. Plant Cell 15:981–991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag AF, Baloban M, Sani M, Kerscher B, Pierre O, Farkas A, Longhi R, Boncompagni E, Hérouart D, Dall’Angelo S, Kondorosi E, Zanda M, Mergaert P, Ferguson GP (2011) Protection of Sinorhizobium against host cysteine-rich antimicrobial peptides is critical for symbiosis. PLoS Biol 9(10):e1001169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haag AF, Arnold MFF, Myka KK, Kerscher B, Dall’Angelo S, Zanda M, Mergaert P, Ferguson GP (2013) Molecular insights into bacteroid development during Rhizobium–legume symbiosis. FEMS Microbiol Rev 37:364–383

    Article  CAS  PubMed  Google Scholar 

  • Halim MA, Rahman AY, Sim K-S, Yam H-C, Rahim AA, Ghazali AHA, Najimudin N (2016) Genome sequence of a Gram-positive diazotroph, Paenibacillus durus type strain ATCC 35681. Genome Announc 4:e00005–e00016

    Article  PubMed  PubMed Central  Google Scholar 

  • Haney CH, Long SR (2010) Plant flotillins are required for infection by nitrogen-fixing bacteria. Proc Natl Acad Sci U S A 107:478–483

    Article  CAS  PubMed  Google Scholar 

  • Hashimoto Y, Kondo T, Kageyama Y (2008) Lilliputians get into the limelight: novel class of small peptide genes in morphogenesis. Dev Growth Differ 50(Suppl 1):S269–S276

    Article  CAS  PubMed  Google Scholar 

  • Hassan S, Mathesius U (2012) The role of flavonoids in root–rhizosphere signalling: opportunities and challenges for improving plant–microbe interactions. J Exp Bot 63(9):3429–3444

    Article  CAS  PubMed  Google Scholar 

  • Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Hunt P, Dennis E, Jensen SB, Jensen EO (2006) Hemoglobin is essential for normal growth of Arabidopsis organs. Physiol Plant 127:157–166

    Article  CAS  Google Scholar 

  • Hidalgo E, Leyva A, Ruiz-Argüeso T (1990) Nucleotide sequence of the hydrogenase structural genes from Rhizobium leguminosarum. Plant Mol Biol 15:367–370

    Article  CAS  PubMed  Google Scholar 

  • Howard JB, Rees DC (2006) Nitrogen fixation special feature: how many metals does it take to fix N2? A mechanistic overview of biological nitrogen fixation. Proc Natl Acad Sci U S A 103:17088–17093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy JA, Robinson JT, Kakar S, Smagghe BJ, Hargrove MS (2007) Plant hemoglobins: a molecular fossil record for the evolution of oxygen transport. J Mol Biol 371:168–179

    Article  CAS  PubMed  Google Scholar 

  • Hoy JA, Hargrove MS (2008) The structure and function of plant hemoglobins. Plant Physiol Biochem 46:371–379

    Article  CAS  PubMed  Google Scholar 

  • Hubbell DH, Morales VM, Umali-García M (1978) Pectolytic enzymes in Rhizobium. Appl Environ Microbiol 35:210–213

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbell D (1981) Legume infection by Rhizobium: a conceptual approach. BioScience 31:832–837

    Article  Google Scholar 

  • Jacobsen-Lyon K, Jensen EO, Jorgensen JE, Marcker KA, Peacock WJ, Dennis ES (1995) Symbiotic and nonsymbiotic hemoglobin genes of Casuarina glauca. Plant Cell 7:213–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janczarek M, Rachwał K, Marzec A, Grządziel J, Palusińska-Szysz M (2015a) Signal molecules and cell-surface components involved in early stages of the legume–rhizobium interactions. Appl Soil Ecol 84:94–113

    Article  Google Scholar 

  • Janczarek M, Rachwał K, Cieśla J, Ginalska G, Bieganowski A (2015b) Production of exopolysaccharide by Rhizobium leguminosarum bv. trifolii and its role in bacterial attachment and surface properties. Plant and Soil 388:211–227

    Article  CAS  Google Scholar 

  • Jaszek M, Janczarek M, Kuczyński K, Piersiak T, Grzywnowicz K (2014) The response of the Rhizobium leguminosarum bv. trifolii wild-type and exopolysaccharide-deficient mutants to oxidative stress. Plant Soil 376:75–94

    Article  CAS  Google Scholar 

  • Jiménez-Zurdo JI, Mateos PF, Dazzo FB, Martínez-Molina E (1996a) Cell-bound cellulase and polygalacturonase production by Rhizobium and Bradyrhizobium species. Soil Biol Biochem 28:917–921

    Article  Google Scholar 

  • Jiménez-Zurdo JI, Mateos PF, Dazzo FB, Martínez-Molina E (1996b) Influence of the symbiotic plasmid (pSym) on cellulase production by Rhizobium leguminosarum bv. trifolii ANU843. Soil Biol Biochem 28:131–133

    Article  Google Scholar 

  • Jones KM, Kobayashi H, Davies BW, Taga ME, Walker GH (2007) How rhizobial symbionts invade plants: the Sinorhizobium-Medicago model. Nat Rev Microbiol 5:619–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly SJ, Muszynski A, Kawaharada Y, Hubber AM, Sullivan JT, Sandal N, Carlson RW, Stougaard J, Ronson CW (2013) Conditional requirement for exopolysaccharide in the Mesorhizobium-Lotus symbiosis. Mol Plant Microbe Interact 26:319–329

    Article  CAS  PubMed  Google Scholar 

  • Kijne JW, Bauchrowitz MA, Díaz CL (1997) Root lectins and rhizobia. Plant Physiol 115:869–873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim CH, Tully RE, Keister DL (1989) Exopolysaccharide-deficient mutants of Rhizobium fredii HH303 which are symbiotically effective. Appl Environ Microbiol 55:1852–1859

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kouchi H, Takane K, So RB, Ladha JK, Reddy PM (1999) Rice ENOD40: isolation and expression analysis in rice and transgenic soybean root nodules. Plant J 18:121–129

    Article  CAS  PubMed  Google Scholar 

  • Kubo H (1939) Über hämoprotein aus den wurzelknöllchen von leguminosen. Acta Phytochim (Tokyo) 11:195–200

    CAS  Google Scholar 

  • Kumagai H, Kinoshita E, Ridge RW, Kouchi H (2006) RNAi knock-down of ENOD40s leads to significant suppression of nodule formation in Lotus japonicus. Plant Cell Physiol 47:1102–1111

    Article  CAS  PubMed  Google Scholar 

  • Kundu S, Trent JT III, Hargrove MS (2003) Plants, humans and hemoglobins. Trends Plant Sci 8:387–393

    Article  CAS  PubMed  Google Scholar 

  • Lang K, Lindemann A, Hauser F, Göttfert M (2008) The genistein stimulon of Bradyrhizobium japonicum. Mol Genet Genomics 279:203–211

    Article  CAS  PubMed  Google Scholar 

  • Laplaze L, Lucas M, Champion A (2015) Rhizobial root hair infection requires auxin signaling. Trends Plant Sci 20(6):332–334

    Article  CAS  PubMed  Google Scholar 

  • Laporte P, Merchan F, Amor BB, Wirth S, Crespi M (2007) Riboregulators in plant development. Biochem Soc Trans 35:1638–1642

    Article  CAS  PubMed  Google Scholar 

  • Lefebvre B, Timmers T, Mbengue M, Moreau S, Hervé C, Tóth K, Bittencourt-Silvestre J, Klaus D, Deslandes L, Godiard L, Murray JD, Udvardi MK, Raffaele S, Mongrand S, Cullimore J, Gamas P, Niebel A, Ott T (2010) A remorin protein interacts with symbiotic receptors and regulates bacterial infection. Proc Natl Acad Sci U S A 107:2343–2348

    Google Scholar 

  • Lerouge P, Roché P, Faucher C, Maillet F, Truchet G, Promé J-C, Dénarié J (1990) Symbiotic host-specificity of Rhizobium meliloti is determined by a sulphated and acylated glucosamine oligosaccharide signal. Nature 344:781–784

    Article  CAS  PubMed  Google Scholar 

  • Le Strange KK, Bender GL, Djordjevic MA, Rolfe BG, Redmond JW (1990) The Rhizobium strain NGR234 nodD1 gene product responds to activation by the simple phenolic compounds vanillin and isovanillin present in wheat seedling extracts. Mol Plant Microbe Interact 3:214–220

    Article  Google Scholar 

  • Lévy J, Bres C, Geurts R, Chalhoub B, Kulikova O, Duc G, Journet EP, Ané JM, Lauber E, Bisseling T, Dénarié J, Rosenberg C, Debellé F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303(5662):1361–1364

    Article  PubMed  CAS  Google Scholar 

  • Leyva A, Palacios JM, Ruiz-Argüeso T (1987) Cloning and characterization of hydrogen uptake genes from Rhizobium leguminosarum. Appl Environ Microbiol 53:2539–2543

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leyva A, Palacios JM, Murillo J, Ruiz-Argüeso T (1990) Genetic organization of the hydrogen uptake (hup) cluster from Rhizobium leguminosarum. J Bacteriol 172:1647–1655

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Libault M (2015) The root hair: a single cell model for systems biology. In: de Bruijn F (ed) Biological nitrogen fixation, vol 2. John Wiley & Sons, New York, pp 417–424

    Google Scholar 

  • Limpens E, Franken C, Smit P, Willemse J, Bisseling T, Geurts R (2003) LysM domain receptor kinases regulating rhizobial Nod factor-induced infection. Science 302(5645):630–633

    Article  CAS  PubMed  Google Scholar 

  • Limpens E, Mirabella R, Fedorova E, Franken C, Franssen H, Bisseling T, Geurts R (2005) Formation of organelle-like N2-fixing symbiosomes in legume root nodules is controlled by DMI2. Proc Natl Acad Sci U S A 102:10375–10380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lioi L, Galasso I, Santantonio M, Lanave C, Bollini R, Sparvoli F (2006) Lectin gene sequences and species relationships among cultivated legumes. Genet Resour Crop Evol 53:1615–1623

    Article  CAS  Google Scholar 

  • Ljunggren H, Fahraeus G (1961) The role of polygalacturonase in root-hair invasion by nodule bacteria. J Gen Microbiol 26:521–528

    Article  CAS  PubMed  Google Scholar 

  • Loh J, Stacey G (2003) Nodulation gene regulation in Bradyrhizobium japonicum: a unique integration of global regulatory circuits. Appl Environ Microbiol 69:10–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López M, Carbonero V, Cabrera E, Ruiz-Argüeso T (1983) Effects of host on the expression of the H2-uptake hydrogenase of Rhizobium in legume nodules. Plant Sci Lett 29:191–199

    Article  Google Scholar 

  • Mabood F, Souleimanov A, Khan W, Smith DL (2006) Jasmonates induce Nod factor production by Bradyrhizobium japonicum. Plant Physiol Biochem 44:759–765

    Article  CAS  PubMed  Google Scholar 

  • Maj D, Wielbo J, Marek-Kozaczuk M, Skorupska A (2010) Response to flavonoids as a factor influencing competitiveness and symbiotic activity of Rhizobium leguminosarum. Microbiol Res 165:50–60

    Article  CAS  PubMed  Google Scholar 

  • Mandal SM, Chakraborty D, Dey S (2010) Phenolic acids act as signaling molecules in plant-microbe symbioses. Plant Signal Behav 5:359–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos PF, Jiménez-Zurdo JI, Chen J, Squartini A, Haack S, Martínez-Molina E, Hubbell DH, Dazzo F (1992) Cell-associated pectinolytic and cellulolytic enzymes in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 58:1816–1822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mateos PF, Baker DL, Philip-Hollingsworth S, Squartini A, Paruffo AD, Nuti MP, Dazzo FB (1995) Direct in situ identification of cellulose microfibrils associated with Rhizobium leguminosarum biovar trifolii attached to the root epidermis of white clover. Can J Microbiol 41:202–207

    Article  CAS  Google Scholar 

  • Mateos PF, Baker D, Petersen M, Velázquez E, Jiménez-Zurdo JI, Martínez-Molina E, Squartini A, Orgambide G, Hubbell D, Dazzo FB (2001) Erosion of root epidermal cell walls by Rhizobium polysaccharide-degrading enzymes as related to primary host infection in the Rhizobium-legume symbiosis. Can J Microbiol 47:475–487

    CAS  PubMed  Google Scholar 

  • Mathesius U (2009) Comparative proteomic studies of root-microbe interactions. J Proteomics 72:353–366

    Article  CAS  PubMed  Google Scholar 

  • Matvienko M, van de Sande K, Yang WC, van Kammen A, Bisseling T, Franssen H (1994) Comparison of soybean and pea ENOD40 cDNA clones representing genes expressed during both early and late stages of nodule development. Plant Mol Biol 26:487–493

    Article  CAS  PubMed  Google Scholar 

  • Marketon MM, Glenn SA, Eberhard A, González JA (2003) Quorum sensing controls exopolysaccharide production in Sinorhizobium meliloti. J Bacteriol 185:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maróti G, Kereszt A, Kondorosi E, Mergaert P (2011) Natural roles of antimicrobial peptides in microbes, plants and animals. Res Microbiol 162:363–374

    Article  PubMed  CAS  Google Scholar 

  • Martínez-Abarca F, Martínez-Rodríguez L, López-Contreras JA, Jiménez-Zurdo JI, Toro N (2013) Complete genome sequence of the alfalfa symbiont Sinorhizobium/Ensifer meliloti strain GR4. Genome Announc 1:e00174–e00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Martínez-Molina E, Morales VM, Hubbell DH (1979) Hydrolytic enzyme production by Rhizobium. Appl Environ Microbiol 38:1186–1188

    PubMed  PubMed Central  Google Scholar 

  • McAnulla C, Edwards A, Sanchez-Contreras M, Sawers RG, Downie JA (2007) Quorum-sensing-regulated transcriptional initiation of plasmid transfer and replication genes in Rhizobium leguminosarum biovar viciae. Microbiology 153:2074–2082

    Article  CAS  PubMed  Google Scholar 

  • McCoy E (1932) Infection by Bact. radicicola in relation to the microchemistry of the host’s cell walls. Proc R Soc B 110:514–533

    Article  CAS  Google Scholar 

  • Mergaert P, Nikovics K, Kelemen Z, Maunoury N, Vaubert D, Kondorosi A, Kondorosi E (2003) A novel family in Medicago truncatula consisting of more than 300 nodule-specific genes coding for small, secreted polypeptides with conserved cysteine motifs. Plant Physiol 132:161–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miri M, Janakirama P, Held M, Ross L, Szczyglowski K (2015) Into the root: how cytokinin controls rhizobial infection. Trends Plant Sci 21:178–186

    Article  PubMed  CAS  Google Scholar 

  • Montiel J, Szűcs A, Boboescu IZ, Gherman VD, Kondorosi É, Kereszt A (2015) Terminal bacteroid differentiation is associated with variable morphological changes in legume species belonging to the inverted repeat-lacking clade. Mol Plant Microbe Interact 29(3):210–219

    Article  CAS  Google Scholar 

  • Morales V, Martínez-Molina E, Hubbell D (1984) Cellulase production by Rhizobium. Plant Soil 80:407–415

    Article  CAS  Google Scholar 

  • Murray JD (2011) Invasion by invitation: rhizobial infection in legumes. Mol Plant Microbe Interact 24(6):631–639

    Article  CAS  PubMed  Google Scholar 

  • Nievas F, Bogino P, Sorroche F, Giordano W (2012) Detection, characterization and biological effect of quorum-sensing signaling molecules in peanut-nodulating Bradyrhizobia. Sensors 12:2851–2873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novák K, Chovanec P, Skrdleta V, Kropácová M, Lisá L, Nemcová M (2002) Effect of exogenous flavonoids on nodulation of pea (Pisum sativum L.) J Exp Bot 53:1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Nutman P, Doncaster C, Dart P (1973) Infection of clover by root-nodule bacteria. British Film Institute, London

    Google Scholar 

  • Oldroyd GED, Murray JD, Poole PS, Downie JA (2011) The rules of engagement in the legume-rhizobial symbiosis. Annu Rev Genet 45:119–144

    Article  CAS  PubMed  Google Scholar 

  • Oldroyd GED (2013) Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants. Nat Rev Microbiol 11:252–263

    Article  CAS  PubMed  Google Scholar 

  • Ott T, van Dongen JT, Günther C, Krusell L, Desbrosses G, Vigeolas H, Bock V, Czechowski T, Geigenberger P, Udvardi MK (2005) Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr Biol 15:531–535

    Article  CAS  PubMed  Google Scholar 

  • Palacios JM, Manyani H, Martínez M, Ureta AC, Brito B, Básscones E, Rey L, Imperial J, Ruiz-Argüeso T (2005) Genetics and biotechnology of the H2-uptake [NiFe] hydrogenase from Rhizobium leguminosarum bv. viciae, a legume endosymbiotic bacterium. Biochem Soc Trans 33:94–96

    Article  CAS  PubMed  Google Scholar 

  • Pandey A, Sharma M, Pandey GK (2016) Emerging roles of strigolactones in plant responses to stress and development. Front Plant Sci 7:434

    PubMed  PubMed Central  Google Scholar 

  • Papadopoulou K, Roussis A, Katinakis P (1996) Phaseolus ENOD40 is involved in symbiotic and non-symbiotic organogenetic processes: expression during nodule and lateral root development. Plant Mol Biol 30:403–417

    Article  CAS  PubMed  Google Scholar 

  • Peck MC, Fisher RF, Long SR (2006) Diverse flavonoids stimulate NodD1 binding to nod gene promoters in Sinorhizobium meliloti. J Bacteriol 188:5417–5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peck MC, Fisher RF, Bliss R, Long SR (2013) Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. J Bacteriol 195:3714–3723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peláez-Vico MA, Bernabéu-Roda L, Kohlen W, Soto MJ, López-Ráez JA (2016) Strigolactones in the Rhizobium-legume symbiosis: stimulatory effect on bacterial surface motility and down-regulation of their levels in nodulated plants. Plant Sci 245:119–127

    Article  PubMed  CAS  Google Scholar 

  • Pellock BJ, Teplitski M, Boinay RP, Bauer WD, Walker GC (2002) A LuxR homolog controls production of symbiotically active extracellular polysaccharide II by Sinorhizobium meliloti. J Bacteriol 184(18):5067–5076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pesce A, Couture M, Dewilde S, Guertin M, Yamauchi K, Ascenzi P, Moens L, Bolognesi M (2000) A novel two-over-two alpha-helical sandwich fold is characteristic of the truncated hemoglobin family. EMBO J 19:2424–2434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Podkowinski J, Zmienko A, Florek B, Wojciechowski P, Rybarczyk A, Wrzesinski J, Ciesiolka J, Blazewicz J, Kondorosi A, Crespi M, Legocki A (2009) Translational and structural analysis of the shortest legume ENOD40 gene in Lupinus luteus. Acta Biochim Pol 56:89–102

    CAS  PubMed  Google Scholar 

  • Poustini K, Mabood F, Smith DL (2010) Preincubation of Rhizobium leguminosarum bv. phaseoli with jasmonate and genistein signal molecules increases bean (Phaseolus vulgaris L.) nodulation, nitrogen fixation and biomass production. J Agric Sci Technol 9:107–117

    Google Scholar 

  • Prinsen E, Chauvaux N, Schmidt J, John M, Wieneke U, Greef JD, Schell J, Onckelen HV (1991) Stimulation of indole-3-acetic acid production in Rhizobium by flavonoids. FEBS Lett 282:53–55

    Article  CAS  PubMed  Google Scholar 

  • Puppo A, Pauly N, Boscari A, Mandon K, Brouquisse R (2013) Hydrogen peroxide and nitric oxide: key regulators of the legume—rhizobium and mycorrhizal symbioses. Antioxid Redox Signal 18:2202–2219

    Article  CAS  PubMed  Google Scholar 

  • Qu ZL, Wang HY, Xia GX (2005) GhHb1: a nonsymbiotic hemoglobin gene of cotton responsive to infection by Verticillium dahliae. Biochim Biophys Acta 1730:103–113

    Article  CAS  PubMed  Google Scholar 

  • Rees DC, Howard JB (2000) Nitrogenase: standing at the crossroads. Curr Opin Chem Biol 4:559–566

    Article  CAS  PubMed  Google Scholar 

  • Remigi P, Zhu J, Young JPW, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75

    Article  CAS  PubMed  Google Scholar 

  • Rey L, Murillo J, Hernando Y, Hidalgo E, Cabrera E, Imperial J, Ruiz-Argüeso T (1993) Molecular analysis of a microaerobically induced operon required for hydrogenase synthesis in Rhizobium leguminosarum bv. viciae. Mol Microbiol 8:471–481

    Article  CAS  PubMed  Google Scholar 

  • Rinaudi-Marron LV, González JE (2013) Role of quorum sensing in the Sinorhizobium Meliloti–Alfalfa Symbiosis. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1–2. John Wiley & Sons, Inc., Hoboken, NJ, pp 535–540

    Chapter  Google Scholar 

  • Roberts NJ, Morieri G, Kalsi G, Rose A, Stiller J, Edwards A, Xie F, Gresshoff PM, Oldroyd GED, Downie JA, Etzler ME (2013) Rhizobial and mycorrhizal symbioses in Lotus japonicus require lectin nucleotide phosphohydrolase, which acts upstream of calcium signaling. Plant Physiol 161:556–567

    Article  CAS  PubMed  Google Scholar 

  • Robledo M, Jiménez-Zurdo JI, Velázquez E, Trujillo ME, Zurdo-Piñeiro JL, Ramírez-Bahena MH, Ramos B, Díaz-Mínguez JM, Dazzo F, Martínez-Molina E, Mateos PF (2008) Rhizobium cellulase CelC2 is essential for primary symbiotic infection of legume host roots. Proc Natl Acad Sci U S A 105:7064–7069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robledo M, Jiménez-Zurdo JI, Soto MJ, Velázquez E, Dazzo F, Martínez-Molina E, Mateos PF (2011) Development of functional symbiotic white clover root hairs and nodules requires tightly regulated production of rhizobial cellulase CelC2. Mol Plant Microbe Interact 24:798–807

    Article  CAS  PubMed  Google Scholar 

  • Robledo M, Rivera L, Jiménez-Zurdo JI, Rivas R, Dazzo F, Velázquez E, Martinez-Molina E, Hirsch AM, Mateos PF (2012) Role of Rhizobium endoglucanase CelC2 in cellulose biosynthesis and biofilm formation on plant roots and abiotic surfaces. Microb Cell Fact 11:125

    Article  CAS  PubMed  Google Scholar 

  • Rohrig H, Schmidt J, Miklashevichs E, Schell J, John M (2002) Soybean ENOD40 encodes two peptides that bind to sucrose synthase. Proc Natl Acad Sci U S A 99:1915–1920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosas S, Soria R, Correa N, Abdala G (1998) Jasmonic acid stimulates the expression of nod genes in Rhizobium. Plant Mol Biol 38:1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Ross EJH, Lira-Ruan V, Arredondo-Peter R, Klucas RV, Sarath G (2002) Recent insights into plant hemoglobins. Rev Plant Biochem Biotechnol 1:173–189

    Google Scholar 

  • Ruiz-Argüeso T, Imperial J, Palacios JM (2000) In: Triplett EW (ed) Prokaryotic nitrogen fixation: a model system for analysis of a biological process. Horizon Scientific Press, Wymondham, pp 489–507

    Google Scholar 

  • Sinharoy S, Liu C, Breakspear A, Guan D, Shailes S, Nakashima J, Zhang D, Wen J, Torres-Jerez I, Oldroyd GED, Murray JD, Udvardi MK (2016) A Medicago truncatula cystathionine-β-synthase-like domain-containing protein is required for rhizobial infection and symbiotic nitrogen fixation. Plant Physiol 170:2204–2217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simpson FB, Burris RH (1984) A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science 224:1095–1097

    Article  CAS  PubMed  Google Scholar 

  • Skorupska A, Janczarek M, Marczak M, Mazur A, Król J (2006) Rhizobial exopolysaccharides: genetic control and symbiotic functions. Microb Cell Fact 16:5–7

    Google Scholar 

  • Soto MJ, Fernández-Aparicio M, Castellanos-Morales V, García-Garrido JM, Ocampo JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Spaepen S, Das F, Luyten E, Michiels J, Vanderleyden J (2009) Indole-3-acetic acid-regulated genes in Rhizobium etli CNPAF512. FEMS Microbiol Lett 291(2):195–200

    Article  CAS  PubMed  Google Scholar 

  • Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:185–190

    Article  CAS  Google Scholar 

  • Spaink HP, Sheeley DM, van Brussel AAN, Glushka J, York WS, Tak T, Geiger O, Kennedy EP, Reinhold VN, Lugtenberg BJJ (1991) A novel highly saturated fatty acid moiety of lipo-oligosaccharide signals determines host specificity of Rhizobium. Nature 354:125–130

    Article  CAS  PubMed  Google Scholar 

  • Sreevidya VS, Hernandez-Oane RJ, So RB, Sullia SB, Stacey G, Ladha JK, Reddy PM (2005) Expression of the legume symbiotic lectin genes psl and gs52 promotes rhizobial colonization of roots in rice. Plant Sci 169:726–736

    Article  CAS  Google Scholar 

  • Stacey G, Libault M, Brechenmacher L, Wan J, May GD (2006) Genetics and functional genomics of legume nodulation. Curr Opin Plant Biol 9:110–121

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2006) Endogenous isoflavones are essential for the establishment of symbiosis between soybean and Bradyrhizobium japonicum. Plant J 48:261–273

    Article  CAS  PubMed  Google Scholar 

  • Subramanian S, Stacey G, Yu O (2007) Distinct, crucial roles of flavonoids during legume nodulation. Trends Plant Sci 12:282–285

    Article  CAS  PubMed  Google Scholar 

  • Sugiyama A, Yazaki K (2014) Flavonoids in plant rhizospheres: secretion, fate and their effects on biological communication. Plant Biotechnol 31:431–443

    Article  CAS  Google Scholar 

  • Sun J, Cardoza V, Mitchell DM, Bright L, Oldroyd GED, Harris JM (2006) Crosstalk between jasmonic acid, ethylene and Nod factor signaling allows integration of diverse inputs for regulation of nodulation. Plant J 46(6):961–970

    Article  CAS  PubMed  Google Scholar 

  • Suominen L, Luukkainen R, Roos C, Lindström K (2003) Activation of the nodA promoter by the nodD genes of Rhizobium galegae induced by synthetic flavonoids or Galega orientalis root exudate. FEMS Microbiol Lett 219:225–232

    Article  CAS  PubMed  Google Scholar 

  • Suzaki T, Ito M, Kawaguchi M (2013) Genetic basis of cytokinin and auxin functions during root nodule development. Front Plant Sci 4:42

    Article  PubMed  PubMed Central  Google Scholar 

  • Sytnikov DM (2013) How to increase the productivity of the soybean–rhizobial symbiosis. In: James EB (ed) A comprehensive survey of international soybean research – genetics, physiology, agronomy and nitrogen relationships. InTech, Rijeka, Croatia, pp 51–82

    Google Scholar 

  • Tadra-Sfeir MZ, Souza EM, Faoro H, Müller-Santos M, Baura VA, Tuleski TR, Rigo LU, Yates MG, Wassem R, Pedrosa FO, Monteiro RA (2011) Naringenin regulates expression of genes involved in cell wall synthesis in Herbaspirillum seropedicae. Appl Environ Microbiol 77:2180–2183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor ER, Nie XZ, MacGregor AW, Hill RD (1994) A cereal haemoglobin gene is expressed in seed and root tissues under anaerobic conditions. Plant Mol Biol 24:853–862

    Article  CAS  PubMed  Google Scholar 

  • Theunis M, Kobayashi H, Broughton WJ, Prinsen E (2004) Flavonoids, NodD1, NodD2, and nod-box NB15 modulate expression of the y4wEFG locus that is required for indole-3-acetic acid synthesis in Rhizobium sp. strain NGR234. Mol Plant Microbe Interact 17:1153–1161

    Article  CAS  PubMed  Google Scholar 

  • Tjepkema JD (1983) Hemoglobins in the nitrogen-fixing root nodules of actinorhizal plants. Can J Bot 61:2924–2929

    Article  CAS  Google Scholar 

  • Tóth K, Stratil TF, Madsen EB, Ye J, Popp C, Antolín-Llovera M, Grossman C, Jensen ON, Schüßler A, Parniske M, Ott T (2012) Functional domain analysis of the remorin protein LjSYMREM1 in Lotus japonicus. PLoS One 7(1):e30817

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Trevaskis B, Watts RA, Andersson CR, Llewellyn DJ, Hargrove MS, Olson JS, Dennis ES, Peacock WJ (1997) Two hemoglobin genes in Arabidopsis thaliana: the evolutionary origins of leghemoglobins. Proc Natl Acad Sci U S A 94:12230–12234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vance CP, Heichel G (1991) Carbon in N2 fixation: limitation and exquisite adaptation. Annu Rev Plant Physiol 42:373–392

    Article  CAS  Google Scholar 

  • van Damme EJM, Barre A, Rougé P, Peumans WJ (2004) Cytoplasmic/nuclear plant lectins: a new story. Trends Plant Sci 9:484–489

    Article  PubMed  CAS  Google Scholar 

  • Van de Velde W, Zehirov G, Szatmari A, Debreczeny M, Ishihara H, Kevei Z, Farkas A, Mikulass K, Nagy A, Tiricz H, Satiat-Jeunemaître B, Alunni B, Bourge M, Kucho K, Abe M, Kereszt A, Maroti G, Uchiumi T, Kondorosi E, Mergaert P (2010) Plant peptides govern terminal differentiation of bacteria in symbiosis. Science 327:1122–1126

    Article  PubMed  CAS  Google Scholar 

  • van Hameren B, Hayashi S, Gresshoff PM, Ferguson BJ (2013) Advances in the identification of novel factors required in soybean nodulation, a process critical to sustainable agriculture and food security. J Plant Biol Soil Health 1:6

    Google Scholar 

  • van Rhijn P, Fujishige NA, Lim P-O, Hirsch AM (2001) Sugar-binding activity of pea (Pisum sativum) lectin is essential for heterologous infection of transgenic alfalfa (Medicago sativa L.) plants by Rhizobium leguminosarum biovar viciae. Plant Physiol 125:133–144

    Article  Google Scholar 

  • Van Rossum D, Schuurmans FP, Gillis M, Muyotcha A, Van Verseveld HW, Stouthamer AH, Boogerd FC (1995) Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Appl Environ Microbiol 61:1599–1609

    PubMed  PubMed Central  Google Scholar 

  • Varkonyi-Gasic E, White DW (2002) The white clover enod40 gene family: expression patterns of two types of genes indicate a role in vascular function. Plant Physiol 129:1107–1118. Erratum in: Plant Physiol 2002;130:514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107:4206–4272

    Article  CAS  PubMed  Google Scholar 

  • Vijn I, Yang WC, Pallisgård N, Ostergaard Jensen E, van Kammen A, Bisseling T (1995) VsENOD5, VsENOD12 and VsENOD40 expression during Rhizobium-induced nodule formation on Vicia sativa roots. Plant Mol Biol 28:1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Virtanen AI, Laine TR (1946) Brown and green pigments in leguminous root nodules. Nature 1157:25–26

    Article  Google Scholar 

  • Vleghels I, Hontelez J, Ribeiro A, Fransz P, Bisseling T, Franssen H (2003) Expression of ENOD40 during tomato plant development. Planta 218:42–49

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Sun K, Zhou L, Yang R, Zhong Z, Zhu J (2009) Functional analysis of three AHL autoinducer synthase genes in Mesorhizobium loti reveals the important role of quorum sensing in symbiotic nodulation. Can J Microbiol 55:210–214

    Article  CAS  PubMed  Google Scholar 

  • Yuen JPY, Cassini ST, DeOliveira TT, Nagem TJ, Stacey G (1995) Xanthone induction of nod gene expression in Bradyrhizobium japonicum. Symbiosis 19:131–140

    CAS  Google Scholar 

  • Wan X, Hontelez J, Lillo A, Guarnerio C, van de Peut D, Fedorova E, Bisseling T, Franssen H (2007) Medicago truncatula ENOD40-1 and ENOD40-2 are both involved in nodule initiation and bacteroid development. J Exp Bot 58:2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Zhong Z, Cai T, Li S, Zhu J (2004) Heterologous overexpression of quorum-sensing regulators to study cell-density-dependent phenotypes in a symbiotic plant bacterium Mesorhizobium huakuii. Arch Microbiol 182:520–525

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Yang S, Tang F, Zhu H (2012) Symbiosis specificity in the legume–rhizobial mutualism. Cell Microbiol 14:334–342

    Article  PubMed  CAS  Google Scholar 

  • Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc Natl Acad Sci U S A 98:10119–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei M, Yokoyama T, Minamisawa K, Mitsui H, Itakura M, Kaneko T, Tabata S, Saeki K, Omori H, Tajima S, Uchiumi T, Abe M, Ohwada T (2008) Soybean seed extracts preferentially express genomic loci of Bradyrhizobium japonicum in the initial interaction with soybean, Glycine max (L.) Merr. DNA Res 15:201–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weston LA, Mathesius U (2013) Flavonoids: their structure, biosynthesis and role in the rhizosphere, including allelopathy. J Chem Ecol 39:283–297

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg JB, Bergersen FJ, Appleby CA, Turner GL (1974) Facilitated oxygen diffusion: the role of leghemoglobin in nitrogen fixation by bacteroids isolated from soybean root nodules. J Biol Chem 249:4057–4066

    CAS  PubMed  Google Scholar 

  • Wittenberg JB, Bolognesi M, Wittenberg BA, Guertin M (2002) Truncated hemoglobins: a new family of hemoglobins widely distributed in bacteria, unicellular eukaryotes, and plants. J Biol Chem 277:871–874

    Article  CAS  PubMed  Google Scholar 

  • Xie F, Murray JD, Kim J, Heckmann AB, Edwards A, Oldroyd GED, Downie JA (2012) Legume pectate lyase required for root infection by rhizobia. Proc Natl Acad Sci U S A 109(2):633–638

    Article  CAS  PubMed  Google Scholar 

  • Zdyb A, Demchenko K, Heumann J, Mrosk C, Grzeganek P, Göbel C, Feussner I, Pawlowski K, Hause B (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189:568–579

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Subramanian S, Stacey G, Yu O (2009) Flavones and flavonols play distinct critical roles during nodulation of Medicago truncatula by Sinorhizobium meliloti. Plant J 57:171–183

    Article  CAS  PubMed  Google Scholar 

  • Zuanazzi JAS, Clergeot PH, Quirion JC, Husson HP, Kondorosi A, Ratet P (1998) Production of Sinorhizobium meliloti nod gene activator and repressor flavonoids from Medicago sativa roots. Mol Plant Microbe Interact 11:784–794

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro F. Mateos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Menéndez, E., Martínez-Hidalgo, P., Silva, L.R., Velázquez, E., Mateos, P.F., Peix, A. (2017). Recent Advances in the Active Biomolecules Involved in Rhizobia-Legume Symbiosis. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_2

Download citation

Publish with us

Policies and ethics