Skip to main content

Nonsymbiotic and Symbiotic Bacteria Efficiency for Legume Growth Under Different Stress Conditions

  • Chapter
  • First Online:
Microbes for Legume Improvement

Abstract

In order to achieve maximum crop yields, excessive amounts of expensive fertilizers are applied in intensive farming practices. However, the biological nitrogen fixation via symbiotic and nonsymbiotic bacteria can play a significant role in increasing soil fertility and crop productivity, thereby reducing the need for chemical fertilizers. It is well known that a considerable number of bacterial species, mostly those associated with the plant rhizosphere, are able to exert a beneficial effect on plant growth. The use of those bacteria, often called plant growth-promoting rhizobacteria (PGPR), as biofertilizers in agriculture has been the focus of research for several years. The beneficial impact of PGPR is due to direct plant growth promotion by the production of growth regulators, enhanced access to soil nutrients, disease control, and associative nitrogen fixation. Legumes play a crucial role in agricultural production due to their capability to fix nitrogen in association with rhizobia. Inoculation with nodule bacteria called rhizobia has been found to increase plant growth and seed yields in many legume species such as chickpea, common bean, lentil, pea, soybean, and groundnut. However, both rhizobia and legumes suffer heavily and adversely from various abiotic factors. The impact of different stress factors on both PGPR and legume production is critically reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abadía J, López-Millán AF, Rombolà A, Abadía A (2002) Organic acids and Fe-deficiency: a review. Plant Soil 241:75–86

    Article  Google Scholar 

  • Abd-Alla MH (2001) Regulation of nodule formation in soybean-Bradyrhizobium symbiosis is controlled by shoot or/and root signals. Plant Growth Regul 34:241–250

    Article  CAS  Google Scholar 

  • Abd-Alla MH (2011) Nodulation and nitrogen fixation in interspecies grafts of soybean and common bean is controlled by isoflavonoid signal molecules translocated from shoot. Plant Soil Environ 57:453–458

    CAS  Google Scholar 

  • Abd-Alla MH, El-enany AE, Bagy MK, Bashandy SR (2014) Alleviating the inhibitory effect of salinity stress on gene expression in ? fenugreek ( ) symbiosis by isoflavonoids treatment. J Plant Int 9(1):275–284

    Google Scholar 

  • Abd-Alla MH, El-Enany AE, Nafady NA, Khalaf DM, Morsy FM (2014a) Synergistic interaction of Rhizobium leguminosarum bv. viciae and arbuscular mycorrhizal fungi as a plant growth promoting biofertilizers for faba bean (Vicia faba L.) in alkaline soil. Microbiol Res 169:49–58

    Article  CAS  PubMed  Google Scholar 

  • Abd-Alla MH, Issa AA, Ohyama T (2014b) Impact of harsh environmental conditions on nodule formation and dinitrogen fixation of legumes. Agricultural and biological sciences “advances in biology and ecology of nitrogen fixation”. ISBN: 978-953-51-1216-7

    Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2005) Indole acetic acid production by the indigenous isolates of Azotobacter and fluorescent pseudomonas in the presence and absence of tryptophan. Turk J Biol 29:29–34

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    Article  CAS  PubMed  Google Scholar 

  • Ahmad M, Zahir ZA, Asghar HN, Arshad M (2012) The combined application of rhizobial strains and plant growth promoting rhizobacteria improves growth and productivity of mung bean (Vigna radiata L.) under salt-stressed conditions. Ann Microbiol 62:1321–1330

    Article  CAS  Google Scholar 

  • Anandham R, Sridar R, Nalayini P, Poonguzhali S, Madhaiyan M, Sa T (2007) Potential for plant growth promotion in groundnut (Arachis hypogaea L.) cv. ALR-2 by co-inoculation of sulfur-oxidizing bacteria and Rhizobium. Microb Res 162:139–153

    Article  CAS  Google Scholar 

  • Andrews M, Hodge S (2010) Climate change, a challenge for cool season grain legume crop production. In: Climate change and management of cool season grain legume crops. Springer, Netherlands, pp 1–9

    Google Scholar 

  • Arayankoon T, Schomberg HH (1990) Nodulation and N2 fixation of guar at high room temperature. Plant Soil 126:209–213

    Google Scholar 

  • Aydınşakir K, Büyüktaş D, Dinç N, Karaca C (2015) Impact of salinity stress on growing, seedling development and water consumption of peanut (Arachis hypogaea cv. NC-7). Akdeniz Univ Ziraat Fak Derg 28:77–84

    Google Scholar 

  • Bashan Y, Holguin G (1997) Azospirillum–plant relationships: environmental and physio-logical advances (1990–1996). Can J Microbiol 43:103–121

    Article  CAS  Google Scholar 

  • Banath CL, Greenwood EAN, Loneragan JF (1966) Effects of calcium deficiency on symbiotic nitrogen fixation. Plant Physiol 41(5):760–763

    Google Scholar 

  • Bavaresco L, Fregoni H, Fraschini P (1991) Investigations on iron uptake and reduction by excised roots of different grapevine rootstocks and a V. vinifera cultivar. In: Chen Y, Hadar Y (eds) Iron nutrition and interactions in plant. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 139–143

    Chapter  Google Scholar 

  • Becking J (2006) The family Azotobacteraceae. Prokaryotes 6:759–783

    Google Scholar 

  • Bhattacharya A, Vijaylaxmi (2010) Physiological responses of grain legumes to stress environments. In: Yadav SS (ed) Chickpea breeding and management. CAB International, Wallingford, pp 35–86

    Google Scholar 

  • Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    Article  CAS  PubMed  Google Scholar 

  • Bienfait HE, Bino RJ, Vander Blick AM, Duivenvoorden JF, Fontaine FM (1983) Characterization of ferric reducing activity in roots of fe-deficient Phaseolus vulgaris. Physiol Plant 59:196–202

    Article  CAS  Google Scholar 

  • Blaylock AD (1994) Soil salinity, salt tolerance and growth potential of horticultural and landscape plants. Co-operative Extension Service, University of Wyoming, Department of Plant, Soil and Insect Sciences, College of Agriculture, Laramie, Wyoming

    Google Scholar 

  • Bohórquez JM, Romera FJ, Alcántara E (2001) Effect of Fe3+, Zn2+ and Mn2+ on ferric reducing capacity and regreening process of the peach rootstock Nemaguard [Prunus persica (L.) Batsch]. Plant Soil 237:157–163

    Article  Google Scholar 

  • Bolanos L, Brewin NJ, Bonilla I (1996) Effects of boron on Rhizobium-legume cell-surface interactions and nodule development. Plant Physiol 110(4):1249–1256

    Google Scholar 

  • Bordeleau LM, Prevost D (1994) Nodulation and nitrogen fixation in extreme environments. Plant Soil 161:115–125

    Article  CAS  Google Scholar 

  • Boscari A, Mandon K, Dupont L, Poggi MC, Le Rudulier D (2002) BetS Is a major glycine betaine/proline betaine transporter required for early osmotic adjustment in Sinorhizobium meliloti. J Bacteriol 184:2654–2663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bouchenak M, Lamri-Senhadji M (2013) Nutritional quality of legumes, and their role in cardiometabolic risk prevention: a review. J Med Food 16:185–198

    Article  CAS  PubMed  Google Scholar 

  • Bradley L, Hosier S (1999) Guide to Symptoms of Plant Nutrient Deficiencies ISO 690

    Google Scholar 

  • Broughton WJ, Jabbouri S, Perret X (2000) Keys to symbiotic harmony. J Bacteriol 182:5641–5652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bruggemann W, Maas-Kantel K, Moog PR (1993) Iron uptake by leaf mesophyll cells: The role of the plasma membrane-bound ferric-chelate reductase. Planta 190(2)

    Google Scholar 

  • Campos-Vega R, Loarca-Pina G, Dave Oomah B (2010) Minor components of pulses and their potential impact on human health. Food Res Int 43:461–482

    Article  CAS  Google Scholar 

  • Chen H, Richardson AE, Rolfe BG (1993) Studies of the physiological and genetic basis of acid tolerance in Rhizobium leguminosarum biovar trifolii. Appl Environ Microbiol 59:1798–1804

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christophe S, Jean-Christophe A, Annabelle L, Alain O, Marion P, Anne-Sophie V (2011) Plant N fluxes and modulation by nitrogen, heat and water stresses: a review. Based on comparison of legumes and non legume plants. In: Shanker AK, Venkateswarlu B (eds) Abiotic stress in plants–mechanisms and adaptations. InTech, Croatia, pp 79–119

    Google Scholar 

  • Delgado MJ, Ligero F, Lluch C (1994) Effects of salt stress on growth and nitrogen fixation by pea, faba-bean, common bean and soybean plants. Soil Biol Biochem 26:371–376

    Article  CAS  Google Scholar 

  • Donnini S, Castagna A, Ranieri A, Zocchi G (2009) Differential responses in pear and quince genotypes induced by Fe deficiency and bicarbonate. J Plant Physiol 166:1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, Sunderland, MA

    Google Scholar 

  • FAO (1994) Pulses and derived products

    Google Scholar 

  • FAOSTAT (2009) Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Ferguson BJ, Lin MH, Gresshoff PM (2013) Regulation of legume nodulation by acidic growth conditions. Plant Signal Behav 8:e23426

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Flight I, Clifton P (2006) Cereal grains and legumes in the prevention of coronary heart disease and stroke: a review of the literature. Eur J Clin Nutr 60:1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Foster JW (2000) Microbial responses to acid stress. In: Storz G, Hengge-Aronis R (eds) Bacterial stress response. ASM Press, Washington, DC, pp 99–115

    Google Scholar 

  • Foth HD (1990) Fundamentals of soil science. Wiley, New York

    Google Scholar 

  • Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321(1–2):35–59

    Google Scholar 

  • Freiberg C, Fellay R, Bairoch A, Broughton WJ, Rosenthal A, Perret X (1997) Molecular basis of symbiosis between Rhizobium and legumes. Nature 387:394–401

    Article  CAS  PubMed  Google Scholar 

  • Fujihara S, Yoneyama T (1993) Effects of pH and osmotic stress on cellular polyamine contents in the soybean Rhizobia fredii P220 and Bradyrhizobium japonicum A1017. Appl Environ Microbiol 59:1104–1109

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garg N, Geetanjali G (2009) Symbiotic nitrogen fixation in legume nodules: process and signaling: a review. In: Lichtfouse E, Navarette M, Véronique S, Alberola C (eds) Sustainable agriculture. Springer, Netherlands, pp 519–531

    Chapter  Google Scholar 

  • Geurts R, Lillo A, Bisseling T (2012) Exploiting an ancient signalling machinery to enjoy a nitrogen fixing symbiosis. Curr Opin Plant Biol 15:1–6

    Article  Google Scholar 

  • Gordon AJ, Mitchel DF, Ryle GJA, Powell CE (1987) Diurnal production and utilization of photosynthate in nodulated white clover. J Exp Bot 38:84–98

    Article  CAS  Google Scholar 

  • Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crops Res 65:93–106

    Article  Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 13:872–877

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Gill SS, Fujita M (2013) Physiological role of nitric oxide in plants grown under adverse environmental conditions. In: Tuteja N, Gill SS (eds) Plant acclimation to environmental stress. Springer Science + Business Media, New York, pp 269–322

    Chapter  Google Scholar 

  • Hekneby M, Antolin MC, Sanchez-Diaz M (2001) Cold response of annual mediterranean pasture legumes. In: Delgado I, Lloveras J (eds) Quality in lucerne and medics for animal production. Options Mediterraneennes 45. CIHEAM, Zaragoza, pp 157–161

    Google Scholar 

  • Howard JB, Rees DC (1996) Structural Basis of Biological Nitrogen Fixation. Chem Rev 96(7):2965–2982

    Google Scholar 

  • Hungria M, Franco AA, Sprent JI (1993) New sources of high-temperature tolerant rhizobia for Phaseolus vulgaris L. Plant Soil 149(1):103–109

    Google Scholar 

  • Hungria M, Vargas MAT (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crops Res 65:151–164

    Article  Google Scholar 

  • Huss-Danell K (1997) Actinorhizal symbioses and their N2 fixation. New Phytol 136:375–405

    Article  CAS  Google Scholar 

  • Jenkins DJ, Wolever TM, Taylor RH, Barker HM, Fielden H (1980) Exceptionally low blood glucose response to dried beans: comparison with other carbohydrate foods. Br Med J 281:578–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones DL, Darrah PR, Kochian LV (1996) Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil 180:57–66

    Article  CAS  Google Scholar 

  • Kalogeropoulos N, Chiou A, Ioannou M, Karathanos VT, Hassapidou M, Nikolaos K, Andrikopoulos NK (2010) Nutritional evaluation and bioactive microconstituents (phytosterols, tocopherols, polyphenols, triterpenic acids) in cooked dry legumes usually consumed in the Mediterranean countries. Food Chem 121:682–690

    Article  CAS  Google Scholar 

  • Karlidag H, Esitken A, Turan M, Sahin F (2007) Effects of root inoculation of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient element contents of leaves of apple. Sci Hortic 114(1):16–20

    Google Scholar 

  • Keneni AF, Assefa PC, Prabu (2010) Characterization of acid and salt-tolerant rhizobial strains isolated from faba bean fields of Wollo Northern Ethiopia. J Agric Sci Technol 12:365–376

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture – a review. Agron Sustain Dev 27:29–43

    Article  Google Scholar 

  • Kishinevsky BD, Sen D, Weaver RW (1992) Effect of high root temperature on Bradyrhizobium-peanut symbiosis. Plant Soil 143:275–282

    Article  Google Scholar 

  • Kosegarten H, Koyro HW (2001) Apoplastic accumulation of iron in the epidermis of maize (Zea mays) roots grown in calcareous soil. Physiol Plant 113:515–522

    Article  CAS  Google Scholar 

  • Kudapa H, Ramalingam A, Nayakoti S, Chen X, Zhuang WJ, Liang X, Varshney RK (2013) Functional genomics to study stress responses in crop legumes: progress and prospects. Func Plant Biol 40:1221–1233

    Article  CAS  Google Scholar 

  • Kumari MSL, Subbarao NS (1984) Root hair infection and nodulation of lucerne as influenced by salinity and alkalinity. Plant Soil 40:261–268

    Article  Google Scholar 

  • Ladrera R, Marino D, Larrainzar E, González EM, Arrese-Igor C (2007) Reduced carbon availability to bacteroids and elevated ureides in nodules, but not in shoots, are involved in nitrogen fixation response to early drought in soybean. Plant Physiol 145:539–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lapinskas EB (2007) The effect of acidity on the distribution and symbiotic efficiency of rhizobia in Lithuanian soils. Eurasian Soil Sci 40:419–425

    Article  Google Scholar 

  • Latef AAHA, Ahmad P (2015) Legumes and breeding under abiotic stress: an overview. In: Legumes under environmental stress yield, improvement and adaptations. John Wiley & Sons Ltd, Hoboken, NJ, pp 1–20

    Google Scholar 

  • Lindström K, Sorsa M, Polkunen J, Kansaner P (1985) Symbiotic nitrogen fixation of Rhizobium (Galega) in acid soils, and its survival in soil under acid and cold stress. Plant Soil 87:293–302

    Article  Google Scholar 

  • Liu J-Q, Allan DL, Vance CP (2010) Systemic signaling and local sensing of phosphate in common bean: Cross-Talk between photosynthate and microRNA399. Mole Plant 3(2):428–437

    Google Scholar 

  • Long SR (1989) Rhizobium genetics. Annu Rev Genet 23:483–506

    Article  CAS  PubMed  Google Scholar 

  • López M, Herrera-Cervera JA, Iribarne C, Tejera NA, Lluch C (2008) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  PubMed  CAS  Google Scholar 

  • López-Millán AF, Morales F, Abadía A, Abadía J (2001) Iron deficiency-associated changes in the composition of the leaf apoplastic fluid from field-grown pear (Pyrus communis L.) trees. J Exp Bot 52:1489–1498

    Article  PubMed  Google Scholar 

  • Manuel D, Alcántara E (2002) A comparison of ferric-chelate reductase and chlorophyll and growth ratios as indices of selection of quince, pear and olive genotypes under iron deficiency stress. Plant Soil 241:49–56

    Article  Google Scholar 

  • Marino D, Frendo P, Ladrera R, Zabalza A, Puppo A, Arrese-Igor C, González EM (2007) Nitrogen fixation control under drought stress. Localized or systemic? Plant Physiol 144:1233

    Article  CAS  Google Scholar 

  • Mengel K (1994) Iron availability in plant tissues—iron chlorosis on calcareous soils. Plant Soil 165:275–283

    Article  CAS  Google Scholar 

  • Mengel K (1995) Iron availability in plant tissues—iron chlorosis on calcareous soils. In: Abadía J (ed) Iron nutrition in soils and plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp 389–397

    Chapter  Google Scholar 

  • Michiels J, Verreth C, Vanderleyden J (1994) Effects of temperature stress on bean nodulating Rhizobium strains. Appl Environ Microbiol 60:1206–1212

    CAS  PubMed  PubMed Central  Google Scholar 

  • Miller PR, McConkey BG, Clayton GW, Brandt SA, Staricka JA, Johnston AM, Neill KE (2002) Pulse crop adaptation in the northern Great Plains. Agron J 94:261–272

    Article  Google Scholar 

  • Molassiotis AN, Diamantidis GC, Therios IN, Tsirakoglou V, Dimassi KN (2005) Oxidative stress, antioxidant activity and Fe (III)-chelate reductase activity of five Prunus rootstocks explants in response to Fe deficiency. Plant Growth Regul 46:69–78

    Article  CAS  Google Scholar 

  • Mollard RC, Zykus A, Luhovyy BL, Nunez MF, Wong CL, Anderson GH (2012) The acute effects of a pulse-containing meal on glycaemic responses and measures of satiety and satiation within and at a later meal. Br J Nutr 108:509–517

    Article  CAS  PubMed  Google Scholar 

  • Monica NISTE, Roxana VIDICAN, Ioan ROTAR, Rodica POP (2013) The effect of pH stress on the survival of Rhizobium trifolii and Sinorhizobium meliloti in vitro. Bull UASMV Ser Agric 70(2):449–450

    Google Scholar 

  • Morel MA, Braña V, Castro-Sowinski S (2012) Legume crops, importance and use of bacterial inoculation to increase production. In: Goyal A (ed) Crop plant. InTech, Croatia. doi:10.5772/37413

    Google Scholar 

  • Moriuchi KS, Friesen ML, Cordeiro MA, Badri M, Vu WT, Main BJ et al (2016) Salinity adaptation and the contribution of parental environmental effects in Medicago truncatula. PLoS One 11(3):e0150350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Munevar F, Wollum AG (1982) Response of soybean plants to high root temperature as affected by plant cultivar and Rhizobium strain. Agron J 74:138–142

    Article  Google Scholar 

  • Muthukumar T, Priyadharsini P, Uma E, Jaison S, Pandey RR (2014) Role of arbuscular mycorrhizal fungi in alleviation of acidity stress on plant growth. In: Miransari M (ed) Use of microbes for the alleviation of soil stresses. Springer Science + Business Media, New York, pp 43–71

    Chapter  Google Scholar 

  • Nabizadeh E, Jalilnejad N, Armakani M (2011) Effect of salinity on growth and nitrogen fixation of Alfalfa (Medicago sativa). World Appl Sci J 13:1895–1900

    CAS  Google Scholar 

  • Nestel P, Cehun M, Chronopoulos A (2004) Effects of long-term consumption and single meals of chickpeas on plasma glucose, insulin, and triacylglycerol concentrations. Am J Clin Nutr 79:390–395

    CAS  PubMed  Google Scholar 

  • Nikolic M, Roemheld V (2003) Nitrate does not result in iron inactivation in the apoplast of sunflower leaves. Plant Physiol 132:1303–1314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Hara GW, Franklin M, Dilworth MJ (1987) Effect of sulfur supply on sulfate uptake, and alkaline sulfatase activity in free-living and symbiotic bradyrhizobia. Arch Microbiol 149(2):163–167

    Google Scholar 

  • Ohyama T, Ohtake N, Sueyoshi K, Tewari K, Takahashi Y, Ito S, Nishiwaki T, Nagumo Y, Ishii S, Sato T (2009) Nitrogen fixation and metabolism in soybean plants. Nova Science Publishers, Inc., New York

    Google Scholar 

  • Oktem HA, Eyidoan F, Demirba D et al (2008) Antioxidant responses of lentil to cold and drought stress. J Plant Biochem Biotechnol 17:15–21

    Article  CAS  Google Scholar 

  • Orhan E, Esitken A, Ercisli S, Turan M, Sahin F (2006) Effects of plant growth promoting rhizobacteria (PGPR) on yield, growth and nutrient contents in organically growing raspberry. Sci Hortic 111:38–43

    Article  CAS  Google Scholar 

  • Ovtsyna AO, Staehelin C (2003) Bacterial signals required for the Rhizobium-legume symbiosis. In: Pandalai SG (ed) Recent research developments in microbiology, Part II, vol 7. Research Signpost, Trivandrum, India, pp 631–648

    Google Scholar 

  • Papanikolaou Y, Fulgoni VL III (2008) Bean consumption is associated with greater nutrient intake, reduced systolic blood pressure, lower body weight, and a smaller waist circumference in adults: results from the National Health and Nutrition Examination Survey 1999–2002. J Am Coll Nutr 27:569–576

    Article  CAS  PubMed  Google Scholar 

  • Perret X, Staehelin C, Broughton WJ (2000) Molecular basis of symbiotic promiscuity. Microbiol Mol Biol Rev 64:180–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piha MI, Munnus DN (1987) Sensitivity of the common bean (Phaseolus vulgaris L.) symbiosis to high soil temperature. Plant Soil 98:183–194

    Article  Google Scholar 

  • Purcell LC, Silva M, King CA, Kim WH (1997) Biomass accumulation and allocation in soybean associated with genotypic differences in tolerance of nitrogen fixation to water deficits. Plant Soil 196:101–103

    Article  CAS  Google Scholar 

  • Rainbird RM, Akins CA, Pate JJS (1983) Effect of temperature on nitrogenase functioning in cowpea nodules. Plant Physiol 73:392–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebello CJ, Greenway FL, Finley JW (2014) A review of the nutritional value of legumes and their effects on obesity and its related co-morbidities. Obes Rev 15:392–407

    Article  CAS  PubMed  Google Scholar 

  • Rodelas B, González-López J, Salmerón V, Pozo C, Martínez-Toledo MV (1996) Enhancement of nodulation, N2 fixation and growth of faba bean (Vicia faba L.) by combined inoculation with Rhizobium leguminosarum bv. viciae and Azospirillum brasilense. Symbiosis 21:175–186

    Google Scholar 

  • Rodelas B, González-López J, Martínez-Toledo MV, Pozo C, Salmeró NV (1999) Influence of Rhizobium/Azotobacter and Rhizobium/Azospirillum combined inoculation on mineral composition of faba bean (Vicia faba L.) Biol Fertil Soils 29:165–169

    Article  CAS  Google Scholar 

  • Romera FJ, Alcantara E, De La MDG (1991) Characterization of the tolerance to iron chlorosis in different peach rootstocks grown in nutrient solution. Plant Soil 130:115–125

    Article  CAS  Google Scholar 

  • Rosas S, Andres J, Rovera M, Correa N (2006) Phosphate-solubilizing Pseudomonas putida can influence the rhizobia–legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Sangakkara UR, Hartwig UA (1996) Soil moisture and potassium affect the performance of symbiotic nitrogen fixation in faba bean and common bean. Plant Soil 184:123–130

    Article  CAS  Google Scholar 

  • Serraj R, Fleurat‐Lessard P, Jaillard B, Drevon JJ (1995) Structural changes in the innercortex cells of soybean root nodules are induced by short‐term exposure to high salt or oxygen concentrations. Plant Cell Environ 18(4):455–462

    Google Scholar 

  • Sharma A, Johri BN (2003) Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS 9 in maize (Zea mays L.) under iron limiting conditions. Microbiol Res 158:243–248

    Article  CAS  PubMed  Google Scholar 

  • Sherren A, Ansari R, Naqvi SSM, Soomaro AQ (1998) Effect of salinity on Rhizobium species, nodulation and growth of soybean. Pak J Bot 1:75–81

    Google Scholar 

  • Singleton PW, Bohlool BB (1984) Effect of salinity on nodule formation by soybean. Plant Physiol 74:72–76

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singleton PW, Swaify SA, Bohlool BB (1982) Effect of salinity on Rhizobium growth and survival. Appl Environ Microbiol 44:884–890

    CAS  PubMed  PubMed Central  Google Scholar 

  • Skorupska A, Wielbo J, Kidaj D, Marek-Kozaczuk M (2010) Enhancing Rhizobium legume symbiosis using signaling factors. In: Khan MS, Zaidi A, Musarrat J (eds) Microbes for legume improvement. Springer-Verlag, New York, pp 27–54. ISBN: 978-3-211

    Chapter  Google Scholar 

  • Smith DL, Dijak M, Hume DJ (1988) The effect of water deficit on N2 (C2H2) fixation by white bean and soybean. Can J Plant Sci 68:957–967

    Article  Google Scholar 

  • Sprent JI, Stephens JH, Rupela OP (1988) Environmental effects on nitrogen fixation. In World crops: cool season food legumes. Springer Netherlands, pp. 801–810

    Google Scholar 

  • Sprent JI (2001) Nodulation in Legumes. Cromwell Press, Royal Botanical Gardens, Kew

    Google Scholar 

  • Stoeva N, Kaymakanova M (2008) Effect of salt stress on the growth and photosynthesis rate of bean plants. J Cent Eur Agric 9:385–392

    Google Scholar 

  • Streeter JG (2003) Effects of drought on nitrogen fixation in soybean root nodules. Plant Cell Environ 26:1199–1204

    Article  CAS  Google Scholar 

  • Subba Rao GV, Johnseng C, Kumarrao JVDK, Jana MK (1999) Response of the Pigeon pea Rhizobium symbiosis to salinity stress: variation among Rhizobium strain in symbiotic ability. Biol Fertil 9:49–53

    Article  Google Scholar 

  • Sulima AS, Zhukov VA, Shtark OY, Borisov AY, Tikhonovich IA (2015) Nod-factor signaling in legume-rhizobial symbiosis. In: El-Shemy H (ed) Plants for the future. InTech, Croatia. doi:10.5772/61165

    Google Scholar 

  • Tagliavini M, Rombola AD (2001) Iron deficiency and chlorosis in orchard and vineyard ecosystems. Eur J Agron 15:71–92

    Article  CAS  Google Scholar 

  • Tejera N, Lluch C, Martínez M, González J (2005) Isolation and characterization of Azotobacter and Azospirillum strains from the sugarcane rhizosphere. Plant Soil 27:223–232

    Article  CAS  Google Scholar 

  • Toker C, Yadav SS (2010) Legumes cultivars for stress environments. In: Climate change and management of cool season grain legume crops. Springer, Netherlands, pp 351–376

    Chapter  Google Scholar 

  • Torres M, Valencia S, Bernal J, Martínez P (2004) Isolation of Enterobacteria, Azotobacter sp. and Pseudomonas sp., producers of indole-3-acetic acid and siderophores, from Colombian rice rhizosphere. Rev Latin Microbiol 42:171–176

    Google Scholar 

  • Toselli M, Marangoni B, Tagliavini M (2000) Iron content in vegetative and reproductive organs of nectarine trees in calcareous soils during the development of chlorosis. Eur J Agron 13(4):279–286

    Google Scholar 

  • Trinchant JC, Boscari A, Spennato G, van de Sype G, le Rudulier D (2004) Proline betaine accumulation and metabolism in alfalfa plants under sodium chloride stress. Exploring its compartmentalization in nodules. Plant Physiol 135:1583–1594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vadez V, Sinclair TR, Serraj R (2000) Asparagine and ureide accumulation in nodules and shoot as feedback inhibitors of N2 fixation in soybean. Physiol Plant 110:215–223

    Article  CAS  Google Scholar 

  • Valentine AJ, Benedito VA, Kang Y (2011) Legume nitrogen fixation and soil abiotic stress: from physiology to genomic and beyond. Annu Plant Rev 42:207–248

    CAS  Google Scholar 

  • Velagaleti RR, Marsh S (1989) Influence of host cultivars and Bradyrhizobium strains on the growth and symbiotic performance of soybean under salt stress. Plant Soil 119:133–138

    Article  Google Scholar 

  • Vincent JM (1977) Rhizobium: General microbiology. In R.W.F. Hardy and W.S. Silver (eds.) A Treatise on Dinitrogen Fixation Section III Biology. John Wiley & Sons, New York, p 277366

    Google Scholar 

  • Wagner SC (2011) Biological nitrogen fixation. Nat Educ Knowl 3:15

    Google Scholar 

  • Weisany W, Raei Y, Allahverdipoor KH (2013) Role of some of mineral nutrients in biological nitrogen fixation. Bull Env Pharmacol Life Sci 2(4):77–84

    Google Scholar 

  • West SA, Kiers ET, Pen I, Denison RF (2002) Sanctions and mutualism stability: when should less beneficial mutualists be tolerated? J Evol Biol 15:830–837

    Article  Google Scholar 

  • Yuanyuan M, Yali Z, Jiang L, Hongbo S (2009). Roles of plant soluble sugars and their responses to plant cold stress. African J Biotechnol 8(10)

    Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Sun Y, Xie X, Kim MS, Dowd SE, Paré PW (2009) A soil bacterium regulates plant acquisition of iron via deficiency-inducible mechanisms. Plant J 58:568–577

    Article  CAS  PubMed  Google Scholar 

  • Zhang XN, Li X, Liu JH (2014) Identification of conserved and novel cold-responsive microRNAs in trifoliate orange (Poncirus trifoliata (L.) Raf.) using high-throughput sequencing. Plant Mol Biol Rep 32:328–341

    Article  CAS  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Metin Turan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Turan, M. et al. (2017). Nonsymbiotic and Symbiotic Bacteria Efficiency for Legume Growth Under Different Stress Conditions. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_16

Download citation

Publish with us

Policies and ethics