Skip to main content

Rhizobial Amelioration of Drought Stress in Legumes

  • Chapter
  • First Online:

Abstract

Rhizobia form a strong and effective symbiosis with legumes and make nitrogen available for uptake by plants. Biological nitrogen fixation (BNF) helps to maintain soil fertility at optimum level. However, among various environmental stress factors, drought stress is the most devastating factor destructing both rhizobial growth and Rhizobium-legume symbiosis. The establishment of a functional and efficient Rhizobium-legume interactions under these unfavorable environmental (arid/semiarid) conditions is therefore very critical. Considering these, understanding the responses of both rhizobia and legumes to drought is important for harnessing the maximum benefits of BNF. In this context, different strategies are adopted to overcome losses from drought stress. These strategies include germplasm screening, breeding drought-tolerant genotypes, transgenic approach, and biological approach. Also, rhizobia have been reported to adapt to severe water-deficit environment. Rhizobia participate in the regulation of plant’s metabolite production (compatible solutes and antioxidant), molecular level responses (gene and protein expression), hormonal adjustment, and nutrient solubilization and uptake, to circumvent drought stress conditions. The advancement in omics has further provided an insight to identify specific proteins and metabolites which could play pivotal roles in stress management and rhizobia-legume symbiosis. Here, in-depth insights into the impact of drought on rhizobia and legumes grown in drought affected areas are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abdel-Salam MS, Ibrahim SA, Abd-El-Halim MM, Badawy FM, Abo-Aba SEM (2011) Phenotypic characterization of indigenous Egyptian Rhizobial strains for abiotic stresses performance. J Am Sci 7:168–174

    Google Scholar 

  • Abdullah F, Hareri F, Naaesan M, Ammar MA, Kanbar OZ (2011) Effect of drought on different physiological characters and yield component in different varieties of Syrian Durum wheat. J Agric Sci 3:127–133

    Google Scholar 

  • Acosta-Gallegos JA, Ochoa-Márquez R, Arrieta-Montiel MP, Ibarra-Pérez F, Pajarito-Ravelero A, Sánchez-Valdéz I (1995) Registration of “Pinto Villa” common bean. Crop Sci 35:1211

    Article  Google Scholar 

  • Akinci S, Losel DM (2010) The effects of water stress and recovery periods on soluble sugars and starch content in cucumber cultivars. Fresenius Environ Bull 19:164–171

    Google Scholar 

  • Ali SF, Rawat LS, Meghvansi MK, Mahna SK (2009) Selection of stress-tolerant rhizobial isolates of wild legumes growing in dry regions of Rajasthan, India. ARPN J Agric Biol Sci 4:13–18

    Google Scholar 

  • Allahmoradi P, Ghobadi M, Taherabadi S, Taherabadi S (2011) Physiological aspects of mungbean in response to drought stress. Int. Conf. Food Eng. Biotechnol. IPCBEE 9: IACSIT Press, Singapore

    Google Scholar 

  • Araus JL, Slafer GA, Royo C, Serret MD (2008) Breeding for yield potential and stress adaptation in cereals. Crit Rev Plant Sci 27:377–412

    Article  Google Scholar 

  • Asch F, Padham JL (2005) Root associated bacteria suppress symptoms of iron toxicity in lowland rice. In: Tielkes E, Hulsebusch C, Hauser I, Deininger A, Becker K (eds) The global food and product chain-dynamics: innovations, conflicts, strategies. MDD GmbH, Stuttgart, p 276

    Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress tolerance. Environ Exp Bot 59:206–216

    Article  CAS  Google Scholar 

  • Ashraf M, Athar HR, Harris PJC, Kwon TR (2008) Some prospective strategies for improving crop salt tolerance. Adv Agron 97:45–110

    Article  CAS  Google Scholar 

  • Ballesteros-Almanza L, Altamirano-Hernandez J, Pena-Cabriales JJ, Santoyo G, Sanchez-Yanez JM, Valencia-Cantero E, Macias-Rodriguez L, Lopez-Bucio J, Cardenas-Navarro R, Farias-Rodriguez R (2010) Effect of co-inoculation with mycorrhiza and rhizobia on the nodule trehalose content of different bean genotypes. Open Microbiol J 4:83–92

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barbosa MAM, Lobato AKDS, Viana GDM, Coelho KNN, Barbosa JRS, Da Costa RCL, Filho BGDS, Neto CFDO (2013) Root contribution to water relations and shoot in two contrasting Vigna unguiculata cultivars subjected to water deficit and inoculation. Romanian Agric Res 30:155–162

    Google Scholar 

  • Barrera-Figueroa B, Pena-Castro J, Acosta-Gallegos JA, Ruiz-Medrano R, Xoconostle-Cazares B (2007) Isolation of dehydration-responsive genes in a drought tolerant common bean cultivar and expression of a group 3 late embryogenesis abundant mRNA in tolerant and susceptible bean cultivars. Funct Plant Biol 34:368–381

    Article  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58

    Article  CAS  Google Scholar 

  • Beebe SE, Rao IM, Cajiao I, Grajales M (2008) Selection for drought resistance in common bean also improves yield in phosphorus limited and favorable environments. Crop Sci 48:582–592

    Article  Google Scholar 

  • Beebe SE, Rao IM, Blair MW, Acosta-Gallegos JA (2013) Phenotyping common beans for adaptation to drought. Front Physiol 4:1–20

    Article  CAS  Google Scholar 

  • Ben Romdhane S, Nasr H, Samba-Mbaye R, Neyra M, Ghorbal MH, Lajudie PD (2006) Genetic diversity of Acacia tortilis ssp. raddiana rhizobia in Tunisia assessed by 16S and 16S-23S rDNA genes analysis. J Appl Microbiol 100:436–445

    Article  CAS  PubMed  Google Scholar 

  • Ben Romdhane S, Tajini F, Trabelsi M, Aouani ME, Mhamdi R (2007) Competition for nodule formation between introduced strains of Mesorhizobium ciceri and native populations of rhizobia nodulating chickpea (Cicer aerietinum) in Tunisia. World J Microbiol Biotechnol 23:1195–1201

    Article  Google Scholar 

  • Ben Romdhane S, Aouani ME, Trabelsi M, De Lajudie P, Mhamdi R (2008) Selection of high nitrogen-fixing rhizobia nodulating chickpea (Cicer arietinum) for semi-arid Tunisia. J Agron Crop Sci 194:413–420

    CAS  Google Scholar 

  • Bhatnagar-Mathur P, Devi MJ, Vadez V, Sharma KK (2009) Differential antioxidative responses in transgenic peanut bear no relationship to their superior transpiration efficiency under drought stress. J Plant Physiol 166:1207–1017

    Article  CAS  PubMed  Google Scholar 

  • Bhatt RM, Srinivasa Rao NK (2005) Influence of pod load response of okra to water stress. Indian J Plant Physiol 10:54–59

    Google Scholar 

  • Bhattacharyya RN, Basu PS (1997) Bioproduction of indole acetic acid by a Rhizobium sp. from the root nodules of Desmodium gangeticum DC. Acta Microbiol Immunol Hung 44:109–118

    CAS  PubMed  Google Scholar 

  • Bianco C, Defez R (2009) Medicago truncatula improves salt tolerance when nodulated by an indole-3-acetic acid-overproducing Sinorhizobium meliloti strain. J Exp Bot 60:3097–3107

    Article  CAS  PubMed  Google Scholar 

  • Billi D, Potts M (2002) Life and death of dried prokaryotes. Res Microbiol 153:7–12

    Article  CAS  PubMed  Google Scholar 

  • Boiero L, Perrig D, Masciarelli O, Pena C, Cassan F, Luna V (2007) Phytohormone production by strains of Bradyrhizobium japonicum and possible physiological and technological implications. Appl Microbiol Biotechnol 74:874–880

    Article  CAS  PubMed  Google Scholar 

  • Boncompagi E, Osteras M, Poggi MC, Ie Rudulier D (1999) Occurrence of choline and glycine betain uptake and metabolism in the family Rhizobiaceae and their roles in osmoprotection. Appl Environ Microbiol 65:2072–2077

    Google Scholar 

  • Bota J, Medrano H, Flexas J (2004) Is photosynthesis limited by decreased Rubisco activity and RuBP content under progressive water stress? New Phytol 162:671–681

    Article  CAS  Google Scholar 

  • Boutraa T, Saders FE (2001) Influence of water stress on grain yield and vegetative growth of two cultivars of bean (Phaseolus vulgaris L.) J Agron Crop Sci 187:251–257

    Article  Google Scholar 

  • Bray EA (1997) Plant responses to water deficit. Trends Plant Sci 2:48–54

    Article  Google Scholar 

  • Carrascoa JA, Armarios P, Pajueloa E, Burgosa A, Caviedesc MA, Lopezb R, Chambera MA, Palomaresc AJ (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznacollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Wang QY, Cheng XG, ZS X, Li LC, Ye XG, Xia LQ, Ma YZ (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353:299–305

    Article  CAS  PubMed  Google Scholar 

  • Comba ME, Benavides MP, Tomaro ML (1998) Effect of salt stress on antioxidant defense system in soybean root nodules. Aust J Plant Physiol 25:665–671

    Article  CAS  Google Scholar 

  • DaMatta FM, Ramalho JDC (2006) Impacts of drought and temperature stress on coffee physiology and production: a review. Braz J Plant Physiol 18:55–81

    Article  CAS  Google Scholar 

  • Dashadi M, Khosravi H, Moezzi A, Nadian H, Heidari M, Radjabi R (2011) Co-inoculation Rhizobium and Azotobacter on growth indices of Faba bean under water stress in the green house condition. Adv Stud Biol 3:373–385

    Google Scholar 

  • Datta C, Basu PS (2000) Indole acetic acid production by a Rhizobium species from root nodules of a leguminous shrub, Cajanus cajan. Microbiol Res 155:123–127

    Article  CAS  PubMed  Google Scholar 

  • Ding X, Zhang S, Wang R, Li S, Liao X (2016) AM fungi and rhizobium regulate nodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency. J Plant Nutr 39:1915–1925

    Article  CAS  Google Scholar 

  • Dominguez-Ferreras A, Perez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuan J (2006) Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 188:7617–7625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duhan JS, Dudeja SS, Khurana AL (1998) Siderophore production in relation to N2 fixation and iron uptake in Pigeon pea-Rhizobium symbiosis. Folia Microbiol 43:421–426

    Article  CAS  Google Scholar 

  • Elboutahiri N, Thami-Alami I, Udupa SM (2010) Phenotypic and genetic diversity in Sinorhizobium meliloti and S. medicae from drought and salt affected regions of Morocco. BMC Microbiol 10:15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Esfahani MN, Mostajeran A (2011) Rhizobial strain involvement in symbiosis efficiency of chickpea-rhizobia under drought stress: plant growth; nitrogen fixation and antioxidant enzyme activities. Acta Physiol Plant 33:1075–1083

    Article  CAS  Google Scholar 

  • Esfahani MN, Mostajeran A, Emtiazi G (2010) The effect of drought stress on nitrogenase and antioxidant enzyme activities in nodules formed from symbiosis of chickpea with two strains of Mesorhizobium ciceri. World Appl Sci J 10:621–626

    CAS  Google Scholar 

  • FAO (2011) The state of the world’s land and water resources for food and agriculture the state of the world’s land and water resources for food and agriculture. Managing systems at risk. http://www.fao.org/docrep/017/i1688e/i1688e.pdf

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycine betaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.) J Agron Crop Sci 194:325–333

    Article  CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009) Plant drought stress: effects, mechanisms and management. Agron Sustain Dev 29:185–212

    Article  Google Scholar 

  • Farrar K, Bryant D, Cope-Selby N (2014) Understanding and engineering beneficial plant–microbe interactions: plant growth promotion in energy crops. Plant Biotechnol J 12:1193–1206

    Article  PubMed  PubMed Central  Google Scholar 

  • Fenta BA, Beebe SE, Kunert KJ, Burridge JD, Barlow KM, Lynch JP, Foyer CH (2014) Field phenotyping of soybean roots for drought stress tolerance. Agronomy 4:418–435

    Article  Google Scholar 

  • Fernandez-Aunion C, Hamouda TB, Iglesias-Guerra F, Argandona M, Reina-Bueno M, Nieto JJ, Aouani ME, Vargas C (2010) Biosynthesis of compatible solutes in rhizobial strains isolated from Phaseolus vulgaris nodules in Tunisian fields. BMC Microbiol 10:192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ferrari AE, Esparrach CA, Galetti MA, Wall LG (2010) Afforestation of a desurfaced field with Robinia pseudoacacia inoculated with Rhizobium spp. and Glomus deserticola. Cienc Suelo 28:105–114

    Google Scholar 

  • Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Plant growth-promoting rhizobacteria for improving nodulation and nitrogen fixation in the common bean (Phaseolus vulgaris L.) World J Microbiol Biotechnol 24:1187–1193

    Article  CAS  Google Scholar 

  • Fitouri DS, Faysal BJ, Kais Z, Salah R, Ridha M (2012) Effect of inoculation with osmotolerant strain of Rhizobium sullae on growth and protein production of sulla (Sulla coronarium L.) under water deficit. J Appl Biosci 51:3642–3651

    Google Scholar 

  • Flexas J, Bota J, Loreto F, Cornic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbo M, Bota J, Galmes J, Henkle M, Madrano S (2006) Decreased Rubisco activity during water stress is not induced by decreased relative water content but related to conditions of low stomatal conductance and chloroplast CO2 concentration. New Phytol 172:73–82

    Article  CAS  PubMed  Google Scholar 

  • Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franzini VI, Azcón R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619

    Article  CAS  PubMed  Google Scholar 

  • Gan YT, Warkentin TD, Bing DJ, Stevenson FC, McDonal CL (2010) Chickpea water use efficiency in relation to cropping system, cultivar, soil nitrogen and rhizozial inoculation in semiarid environment. Agric Water Manag 97:1375–1381

    Article  Google Scholar 

  • Gechev TS, Hille J (2005) Hydrogen peroxide as a signal controlling plant programmed cell death. J Cell Biol 168:17–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Basu PS (2006) Production and metabolism of indole acetic acid in roots and root nodules of Phaseolus mungo. Microbiol Res 161:362–366

    Article  CAS  PubMed  Google Scholar 

  • Gigon A, Matos AR, Laffray D, Zuily-Fodil Y, Pham-Thi AT (2004) Effect of drought stress on lipid metabolism in the leaves of Arabidopsis thaliana (Ecotype Columbia). Ann Bot 94:345–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gloux K, Le Rudulier D (1989) Transport and catabolism of proline betaine in salt-stressed Rhizobium meliloti. Arch Microbiol 151:143–148

    Article  CAS  Google Scholar 

  • Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 5:355–377

    Article  PubMed  Google Scholar 

  • Gorai M, Hachef A, Neffati M (2010) Differential responses in growth and water relationship of Medicago sativa (L.) cv. Gabes and Astragalus gombiformis (Pom.) under water-limited conditions. Emir J Food Agric 22:01–12

    Article  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Improv 23:19–54

    Article  CAS  Google Scholar 

  • Gouffi K, Pica N, Pichereau V, Blanco C (1999) Disaccharides as a new class of nonaccumulated osmoprotectants for Sinorhizobium meliloti. Appl Environ Microbiol 65:1491–1500

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gouffi K, Bernard T, Blanco C (2000) Osmoprotection by pipecolic acid in Sinorhizobium meliloti: specific effects of D and L isomers. Appl Environ Microbiol 66:2358–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B (2011) Role of microorganisms in adaptation of agriculture crops to abiotic stresses. World J Microbiol Biotechnol 27:1231–1240

    Article  Google Scholar 

  • Hanafy MS, El-Banna A, Schumacher HM, Jacobsen HJ, Hassan FS (2013) Enhanced tolerance to drought and salt stresses in transgenic faba bean (Vicia faba L.) plants by heterologous expression of the PR10a gene from potato. Plant Cell Rep 32:663–674

    Article  CAS  PubMed  Google Scholar 

  • Haupt-Herting S, Fock HP (2000) Exchange of oxygen and its role in energy dissipation during drought stress in tomato plants. Physiol Plant 110:489–495

    Article  CAS  Google Scholar 

  • Hossain Z, Komatsu S (2014a) Potentiality of soybean proteomics in untying the mechanism of flood and drought stress tolerance. Proteomes 2:107–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hossain Z, Komatsu S (2014b) Soybean proteomics. Methods Mol Biol 1072:315–331

    Article  CAS  PubMed  Google Scholar 

  • Howieson J, Ballard R (2004) Optimizing the legume symbiosis in stressful and competitive environments within southern Australia-some contemporary thoughts. Soil Biol Biochem 36:1261–1273

    Article  CAS  Google Scholar 

  • Humann JL, Ziemkiewicz HT, Yurgel SN, Kahn ML (2009) Regulatory and DNA repair genes contribute to the desiccation resistance of Sinorhizobium meliloti Rm1021. Appl Environ Microbiol 75:446–453

    Article  CAS  PubMed  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Asgher M (2014a) Can catalase and EPS producing rhizobia ameliorate drought in wheat. Int J Agric Biol 16:3–13

    CAS  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Mahmood S (2014b) Scrutinizing rhizobia to rescue maize growth under reduced water conditions. Soil Sci Soc Am J 78:538–545

    Article  CAS  Google Scholar 

  • Hussain MB, Zahir ZA, Asghar HN, Mubaraka R, Naveed M (2016) Efficacy of rhizobia for improving photosynthesis, productivity and mineral nutrition of maize. Clean – Soil, Air, Water 44:1564–1571

    Article  CAS  Google Scholar 

  • Imen H, Neila A, Adnane B, Manel B, Mabrouk Y, Saidi M, Bouaziz S (2015) Inoculation with phosphate solubilizing Mesorhizobium strains improves the performance of chickpea (Cicer aritenium L.) under phosphorus deficiency. J Plant Nutr 38:1656–1671

    Article  CAS  Google Scholar 

  • Issa S, Wood M (1995) Multiplication and survival of chickpea and bean rhizobia in dry soils: the influence of strains, matric potential and soil texture. Soil Biol Biochem 27:785–798

    Article  CAS  Google Scholar 

  • Iturriaga G, Suarez R, Nova-Franco B (2009) Trehalose metabolism: from osmoprotection to signaling. Int J Mol Sci 10:3793–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain M, Prasad PVV, Boote KJ, Hartwell AL Jr, Chourey PS (2007) Effect of season-long high temperature growth conditions on sugar-to-starch metabolism in developing microspores of grain sorghum (Sorghum bicolor L. Moench). Planta 227:67–79

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Lakshmanan GMA, Gomathinayagam M, Panneerselvam R (2008) Alterations in morphological parameters and photosynthetic pigment responses of Catharanthus roseus under soil water deficits. Colloids Surf B: Biointerfaces 61:298–303

    Article  CAS  PubMed  Google Scholar 

  • Jaleel CA, Manivannan P, Wahid A, Farooq M, Somasundaram R, Panneerselvam R (2009) Drought stress in plants: a review on morphological characteristics and pigments composition. Int J Agric Biol 11:100–105

    Google Scholar 

  • Jebara S, Drevon JJ, Jebara M (2010) Modulation of symbiotic efficiency and nodular antioxidant enzyme activities in two Phaseolus vulgaris genotypes under salinity. Acta Physiol Plant 32:925–932

    Article  Google Scholar 

  • Jiang Y, Liang G, Yu D (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis. Mol Plant 5:1375–1388

    Article  CAS  PubMed  Google Scholar 

  • Jordan WR, Ritichie JT (2002) Influence of soil water stress on evaporation, root absorption and internal water status of cotton. Plant Physiol 48:783–788

    Article  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Singla-Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029. doi:10.3389/fpls.2016.01029

    Article  PubMed  PubMed Central  Google Scholar 

  • Kacperska A (2004) Sensor types in signal transduction pathways in plant cells responding to abiotic stressor: do they depend on stress intensity? Physiol Plant 122:159–168

    Article  CAS  Google Scholar 

  • Kang J, Hwang JU, Lee M, Kim YY, Assmann SM, Martinoia E, Lee Y (2010) PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci USA 107:2355–2360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Karmakar K, Rana A, Rajwar A, Sahgal M, Johri BN (2015) Legume-rhizobia symbiosis under stress. In: Arora NK (ed) Plant microbe symbiosis-applied facets. Springer, New Delhi, pp 241–258

    Google Scholar 

  • Kim TH, Bohmer M, HH H, Nishimura N, Schroeder JI (2010) Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling. Annu Rev Plant Biol 61:561–591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress–contribution of proteomics studies to understanding plant stress response. J Proteome 74:1301–1322

    Article  CAS  Google Scholar 

  • Lazali M, Zaman-Allah M, Amenc L, Ounane G, Abadie J, Drevon JJ (2013) A phytase gene is overexpressed in root nodules cortex of Phaseolus vulgaris–rhizobia symbiosis under phosphorus deficiency. Planta 238:317–324

    Article  CAS  PubMed  Google Scholar 

  • Lopez M, Herrera-Cervera JA, Tejera NA, Lluch C (2008) Growth and nitrogen fixation in Lotus japonicus and Medicago truncatula under NaCl stress: nodule carbon metabolism. J Plant Physiol 165:641–650

    Article  CAS  PubMed  Google Scholar 

  • Ma WB, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Environ Microbiol 69:4396–4402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahmood A, Athar M (2008) Cross inoculation studies: response of Vigna mungo to inoculation with rhizobia from tree legumes growing under arid environment. Int J Environ Sci Technol 5:135–139

    Article  Google Scholar 

  • Malamy JE (2005) Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ 28:67–77

    Article  CAS  PubMed  Google Scholar 

  • Marulanda A, Barea JM, Azcon R (2009) Stimulation of plant growth and drought tolerance by native microorganisms (AM fungi and bacteria) from dry environments: mechanisms related to bacterial effectiveness. J Plant Growth Regul 28:115–124

    Article  CAS  Google Scholar 

  • Matamoros MA, Dalton DA, Ramos J, Clemente MRE, Rubio MC, Becana M (2003) Biochemistry and molecular biology of antioxidants in the rhizobia-legume symbiosis. Plant Physiol 133:449–509

    Article  CAS  Google Scholar 

  • Mehboob I, Naveed M, Zahir ZA (2009) Rhizobial association with non-legumes: mechanisms and applications. Crit Rev Plant Sci 28:432–456

    Article  CAS  Google Scholar 

  • Mehboob I, Zahir ZA, Arshad M, Tanveer A, Farooq-e-Azam (2011) Growth promoting activities of different Rhizobium spp, in wheat. Pak J Bot 43:1643–1650

    Google Scholar 

  • Meuelenberg F, Dakora FD (2007) Assessing the biological potential of N2-fixing leguminosae in Botswana for increased crop yields and commercial exploitation. Afr J Biotechnol 6:325–334

    Google Scholar 

  • Mhadhbi H, Jebara M, Zitoun A, Limam F, Aouani ME (2008) Symbiotic effectiveness and response to mannitol-mediated osmotic stress of various chickpea-rhizobia association. World J Microbiol Biotechnol 24:1027–1035

    Article  Google Scholar 

  • Mhadhbi H, Chihaoui S, Mhamdi R, Mnasri B, Jebara M, Mhamdi R (2011) A highly osmotolerant rhizobial strain confers a better tolerance of nitrogen fixation and enhances protective activities to nodules of Phaseolus vulgaris under drought stress. Afr J Biotechnol 10:4555–4563

    Google Scholar 

  • Miller KJ, Wood JM (1996) Osmoadaptation by rhizosphere bacteria. Annu Rev Microbiol 50:101–136

    Article  CAS  PubMed  Google Scholar 

  • Mirza BS, Mirza MS, Bano A, Malik KA (2007) Coninoculation of chickpea with Rhizobium isolates from roots and nodules and phytohormone-producing Enterobacter strains. Aust J Exp Agric 47:1008–1015

    Article  Google Scholar 

  • Mnasri B, Mrabet M, Laguerre G, Aouani ME, Mhamdi R (2007) Salt tolerant rhizobia isolated from a Tunisian oasis that are highly-effective for N2-fixation with Phaseolus vulgaris constitute a novel biovar (bv. Mediterranense) of Sinorhizobium meliloti. Arch Microbiol 187:79–85

    Article  CAS  PubMed  Google Scholar 

  • Montero-Tavera V, Ruiz-Medrano R, Xoconostle-Cazares B (2008) Systemic nature of drought-tolerance in common bean. Plant Signal Behav 3:663–666

    Article  PubMed  PubMed Central  Google Scholar 

  • Moschetti G, Pelusoa A, Protopapa A, Anastasioa M, Pepe O, Defez R (2005) Use of nodulation pattern, stress tolerance, nodC gene amplification, RAPD-PCR and RFLP- 6S rDNA analysis to discriminate genotypes of Rhizobium leguminosarum biovar viciae. Syst Appl Microbiol 28:619–631

    Article  CAS  PubMed  Google Scholar 

  • Mouradi M, Farissi M, Bouizgaren A, Makoudi B, Kabbadj A, Very AA, Sentenac H, Qaddourya A, Ghoulam C (2016) Effects of water deficit on growth, nodulation and physiological and biochemical processes in Medicago sativa-rhizobia symbiotic association. Arid Land Res Manag 30:193–208

    Article  CAS  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganisms early interactions. J Integr Plant Biol 52:195–204

    Article  CAS  PubMed  Google Scholar 

  • Naresh RK, Purushottam, Singh SP, Dwivedi A, Kumar V (2013) Effects of water stress on physiological processes and yield attributes of different mungbean (L.) varieties. Afr J Biochem Res 7:55–62

    CAS  Google Scholar 

  • Naveed M (2013) Maize endophytes—diversity, functionality and application potential. Ph.D. Thesis, AIT—Austrian Institute of Technology/BOKU University, Tulln Campus, Vienna, Austria

    Google Scholar 

  • Naveed M, Mitter B, Reichenauer TG, Krzysztof W, Sessitsc A (2014a) Increased drought stress resilience of maize through endophytic colonization by Burkholderia phytofirmans PsJN and Enterobacter sp. FD17. Environ Exp Bot 97:30–39

    Article  CAS  Google Scholar 

  • Naveed M, Hussain MB, Zahir ZA, Mitter B, Sessitsch A (2014b) Drought stress amelioration in wheat through inoculation with Burkholderia phytofirmans strain PsJN. Plant Growth Regul 73:121–131

    Article  CAS  Google Scholar 

  • Paul M (2007) Trehalose-6-phosphate. Curr Opin Plant Biol 10:303–309

    Article  CAS  PubMed  Google Scholar 

  • Peix A, Rivas-Boyero AA, Mateos PF, Rodriguez-Barrueco C, Martinez-Molina E, Velazquez E (2001) Growth promotion of chickpea and barley by a phosphate solubilizing strain of Mesorhizobium mediterraneum under growth chamber conditions. Soil Biol Biochem 33:103–110

    Article  CAS  Google Scholar 

  • Pichereau V, Pocard JA, Hamelin J, Blanco C, Bemard T (1998) Different effects of dimethylsulfonipropionate, dimethylsulfonioacetate and other S-methylated compounds on the growth of Sinorhizobium meliloti at low and high osmolarities. Appl Environ Microbiol 64:1420–1429

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pie ZM, Murata Y, Benning G, Thomine S, Klusebner B, Allen GJ, Grill E, Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406:731–734

    Article  Google Scholar 

  • Polania JA, Poschenrieder C, Beebe S, Rao IM (2016) Effective use of water and increased dry matter partitioned to grain contribute to yield of common bean improved for drought resistance. Front Plant Sci 7:1–10

    Article  Google Scholar 

  • Poolman B, Blount P, Folgering JHA, Friesn RHE, Moe PC, van der Heide T (2002) How do membrane proteins sense water stress? Mol Biol 44:899–902

    Google Scholar 

  • Raghavendra AS, Gonugunta AK, Christmann A, Grill E (2010) ABA perception and signaling. Trends Plant Sci 15:395–401

    Article  CAS  PubMed  Google Scholar 

  • Rajaram S (2005) Role of conventional plant breeding and biotechnology in future wheat production. Turk J Agric For 29:105–111

    Google Scholar 

  • Ramalingam A, Kudapa H, Pazhamala LT, Weckwerth W, Varshney RK (2015) Proteomics and metabolomics: two emerging areas for legume improvement. Front Plant Sci 6:1116. doi:10.3389/fpls.2015.01116

    PubMed  PubMed Central  Google Scholar 

  • Räsänen LA, Lindström K (2003) Effect of biotic and abiotic constraints on the symbiosis between rhizobia and the tropical leguminous trees Acacia and Prosopis. Indian J Exp Biol 41:1142–1159

    PubMed  Google Scholar 

  • Rasanen LA, Saijets S, Jokinen K, Lindstron K (2004) Evaluation of the roles of two compatible solutes, glycine betaine and trehalose, for the Acacia Senegal-Sinorhizobium symbiosis exposed to drought stress. Plant Soil 260:237–251

    Article  Google Scholar 

  • Reddy IJ, Nigam SN, Rao RCN, Reddy NS (2001) Registration of ICGV 87354 peanut germplasm with drought tolerance and rust resistance. Crop Sci 41:274–275

    Article  Google Scholar 

  • Redondo FJ, Coba de la Pena RT, Morcillo CN, Lucas MM, Pueyo JJ (2009) Overexpression of flavodoxin in bacteriods induces changes in antioxidant metabolism leading to delayed senescence and starch accumulation in alfalfa root nodules. Plant Physiol 49:1166–1178

    Google Scholar 

  • Rehman A, Nautiyal CS (2002) Effect of drought on the growth and survival of the stress-tolerant bacterium Rhizobium sp. NBRI2505 sesbania and its drought-sensitive transposon Tn5 mutant. Curr Microbiol 45:368–377

    Article  CAS  PubMed  Google Scholar 

  • Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–19

    Article  CAS  Google Scholar 

  • Ronde JAD, Cress WA, Krugerd GHJ, Strasserd RJ, Wan Staden J (2004) Photosynthetic response of transgenic soybean plants containing an Arabidopsis PSCR gene during heat and drought stress. J Plant Physiol 161:1211–1224

    Article  PubMed  CAS  Google Scholar 

  • Rosas SB, Andres GA, Rovera M, Correa NS (2006) Phosphate solubilizing Pseudomonas putida can influence the rhizobia legume symbiosis. Soil Biol Biochem 38:3502–3505

    Article  CAS  Google Scholar 

  • Rouhier N, Santos CVD, Tarrago L, Rev P (2006) Plant methionine sulfoxide reductase A and B multigenic families. Photosynth Res 89:247–262

    Google Scholar 

  • Sairam R, Srivastava G, Agarwal S, Meena R (2005) Differences in antioxidant activity in response to salinity stress in tolerant and susceptible wheat genotypes. Biol Plant 49:85–91

    Article  CAS  Google Scholar 

  • Sanchez DH, Schwabe F, Erban A, Udvardi MK, Kopka J (2012) Comparative metabolomics of drought acclimation in model and forage legume. Plant Cell Environ 35:136–149

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Valdez I, Acosta-Gallegos JA, Ibarra-Pérez FJ, Rosales-Serna R, Singh SP (2004) Registration of Pinto Saltillo common bean. Crop Sci 44:1865–1866

    Article  Google Scholar 

  • Sangtarash MH (2010) Responses of different wheat genotypes to drought stress applied at different growth stages. Pak J Biol Sci 13:114–119

    Article  CAS  PubMed  Google Scholar 

  • Sassi-Aydi S, Aydi S, Abdelly C (2012) Inoculation with the native rhizobium gallicum 8a3 improves osmotic stress tolerance in common bean drought-sensitive cultivar. Acta Agric Scand Sect B Soil Plant Sci 62:179–187

    CAS  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    Article  CAS  PubMed  Google Scholar 

  • Sengupta D, Kannan M, eddy AR (2011) A root proteomics-based insight reveals dynamic regulation of root proteins under progressive drought stress and recovery in Vigna radiate (L.) Wilczek. Planta 233:1111–1127

    Article  CAS  PubMed  Google Scholar 

  • Serraj R, Sinclair TR, Purcell LC (1999) Symbiotic N2 fixation response to drought. J Exp Bot 50:143–155

    CAS  Google Scholar 

  • Sessitsch A, Howieson JG, Perret X, Antoun H, Martinez-Romero R (2002) Advances in Rhizobium research. Crit Rev Plant Sci 21:323–378

    Article  CAS  Google Scholar 

  • Shao HB, Chu LY, Jaleel CA, Zhao XA (2008) Water-deficit stress-induced anatomical changes in higher plants. C R Biol 331:215–225

    Article  PubMed  Google Scholar 

  • Sharma S, Upadhyaya HD, Varshney RK, Gowda CLL (2013) Pre-breeding for diversification of primary gene pool and genetic enhancement of grain legumes. Front Plant Sci 4:1–14

    Google Scholar 

  • Shulaev V, Cortes D, Miller G, Mittler R (2008) Metabolomics for plant stress response. Physiol Plant 132:199–208

    Article  CAS  PubMed  Google Scholar 

  • Sing KB, Osaar M, Saxena MC, Johansen C (1996) Registration of FLIP 87-59C, a drought tolerant chickpea germplasm line. Crop Sci 36:1–2

    Article  Google Scholar 

  • Sing SP, Terah H, Gutierrez JA (2001) Registration of SEA 5 and SEA 13 drought tolerant dry bean germplas. Crop Sci 41:276–277

    Article  Google Scholar 

  • Soliman AS, Shanan NT, Massaoud ON, Swelim DM (2012) Improving salinity tolerance of Acacia saligna (Labill.) plant by Arbuscular mycorrhizal fungi and Rhizobium inoculation. Afr J Biotechnol 11:1259–1266

    Article  CAS  Google Scholar 

  • Srivalli B, Chinnusamy V, Chopra RK (2003) Antioxidant defense in response to abiotic stresses in plants. J Plant Biol 30:121–139

    Google Scholar 

  • Staudinger C, Mehmeti-Tershani V, Gil-Quintana E, Gonzalez EM, Hofhansl F, Bachmann G, Wienkoop S (2016) Evidence for a rhizobia-induced drought stress response strategy in Medicago truncatula. J Proteome 136:202–213

    Article  CAS  Google Scholar 

  • Streeter JG (2003) Effect of trehalose on survival of Bradyrhizobium japonicum during desiccation. J Appl Microbiol 95:484–491

    Article  CAS  PubMed  Google Scholar 

  • Suarez R, Wong A, Ramirez M, Barraz A, Orozco MDC, Cevallos MA, Lara M, Hernandez G, Iturriaga G (2008) Improvement of drought tolerance and grain yield in common bean by overexpressing trehalose-6-phosphate synthase in rhizobia. Mol Plant Microbe Interact 21:958–966

    Article  CAS  PubMed  Google Scholar 

  • Tajini F, Trabelsi M, Drevon JJ (2012) Comparison between the reference Rhizobium tropici CIAT899 and the native Rhizobium etli12a3 for some nitrogen fixation parameters in common bean (Phaseolus vulgaris L.) under water stress. Afr J Microbiol Res 6:4058–4067

    Google Scholar 

  • Thiao M, Neyra M, Isidore E, Sylla S, Lesueur D (2004) Diversity and effectiveness of Rhizobium from Gliricidia sepium native to Reunion Island, Kenya and New Caledonia. World J Microbiol Biotechnol 20:703–709

    Article  CAS  Google Scholar 

  • Uma C, Sivagurunathan P, Sangeetha D (2013) Performance of Bradyrhizobial isolates under drought conditions. Int J Curr Microbiol App Sci 2:228–232

    Google Scholar 

  • Upadyyay SK, Singh DP, Saikia R (2009) Genetic diversity of plant growth promoting rhizobacteria from rhizospheric soil of wheat under saline conditions. Curr Microbiol 59:489–496

    Article  CAS  Google Scholar 

  • Valladares F, Gianoli E, Gomez JM (2007) Ecological limits to plant phenotypic plasticity. New Phytol 176:749–763

    Article  PubMed  Google Scholar 

  • Vanderlinde EM, Harrison JJ, Muszynski A, Carlson RW, Tumer RJ, Yost CK (2010) Identification of a novel ABC transporter required for desiccation tolerance, and biofilm formation in Rhizobium leguminosarum bv. viciae 3841. FEMS Microbiol Ecol 71:327–340

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Mohan SM, Gaur PM, Gangarao NV, Pandey MK, Bohra A, Sawargaonkar SL, Chitikineni A, Kimurto PK, Janila P, Saxena KB, Fikre A, Sharma M, Rathore A, Pratap A, Tripathi S, Datta S, Chaturvedi SK, Mallikarjuna N, Anuradha G, Babbar A, Choudhary AK, Mhase MB, Bharadwaj CH, Mannur DM, Harer PN, Guo B, Liang X, Nadarajan N, Gowda CL (2013) Achievements and prospects of genomics-assisted breeding in three legume crops of the semi-arid tropics. Biotechnol Adv 31:1120–1134

    Article  PubMed  Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Effect of metal-tolerant plant growth-promoting Rhizobium on the performance of pea grown in metal-amended soil. Arch Environ Contam Toxicol 55:33–42

    Article  CAS  PubMed  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Frey NFD, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Weckwerth W (2011) Green systems biology-From single genomes, proteomes and metabolomes to ecosystems research and biotechnology. J Proteome 75:284–305

    Article  CAS  Google Scholar 

  • Wilkinson S, Davies W (2010) Drought, ozone, ABA and ethylene: new insights from cell to plant to community. Plant Cell Environ 33:510–525

    Article  CAS  PubMed  Google Scholar 

  • Xu J, Li X, Luo L (2012) Effects of engineered Sinorhizobium meliloti on cytokinin synthesis and tolerance of alfalfa to extreme drought stress. Appl Environ Microbiol 78:8056–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DG, Yang FP, Chen XQ, Zhang LQ, Zhang XD (2009) Obtainment of tranxformed maize with dehydration-responsive transcription factor CBF4 gene. Acta Agron Sin 35:1759–1763

    CAS  Google Scholar 

  • Yanni Y, Zidan M, Dazzo F, Rizk R, Mehesen A, Abdelfattah F, Elsadany A (2016) Enhanced symbiotic performance and productivity of drought stressed common bean after inoculation with tolerant native rhizobia in extensive fields. Agric Ecosyst Environ 232:119–128

    Article  Google Scholar 

  • Yordanov I, Velikova V, Tsonev T (2003) Plant responses to drought and stress tolerance. Bulg J Plant Physiol (Special issue):187–206

    Google Scholar 

  • Zacarias JJJ, Altamirano-Hernandez J, Cabriales JJP (2004) Nitrogenase activity and trehalose content of nodules of drought-stressed common bean infected with effective (Fix+) and ineffective (Fix) rhizobia. Soil Biol Biochem 36:1975–1981

    Article  CAS  Google Scholar 

  • Zahran HH (1999) Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 63:968–989

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zahran HH (2001) Rhizobia from wild legumes: diversity, taxonomy, ecology, nitrogen fixation and biotechnology. J Biotechnol 91:143–153

    Article  CAS  PubMed  Google Scholar 

  • Zeng N (2003) Drought in the Sahel. Science 302:999–1000

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Lam HM, Zhang J (2007) Inhibition of photosynthesis and energy dissipation induced by water and high light stresses in rice. J Exp Bot 58:1207–1217

    Article  CAS  PubMed  Google Scholar 

  • Zlatev Z, Lidon FC (2012) An overview on drought induced changes in plant growth, water relations and photosynthesis. Emir J Food Agric 24:57–72

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Naveed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Naveed, M., Hussain, M.B., Mehboob, I., Zahir, Z.A. (2017). Rhizobial Amelioration of Drought Stress in Legumes. In: Zaidi, A., Khan, M., Musarrat, J. (eds) Microbes for Legume Improvement. Springer, Cham. https://doi.org/10.1007/978-3-319-59174-2_14

Download citation

Publish with us

Policies and ethics